第二周opencv

一、边缘检测算子

边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。

1、Roberts 算子

通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

import cv2
import numpy as np
import matplotlib.pyplot as pltimage = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)
# 1.定义 Roberts 算子的卷积核
roberts_x = np.array([[1, 0], [0, -1]], dtype=np.float32)
roberts_y = np.array([[0, 1], [-1, 0]], dtype=np.float32)
# 2.二维卷积操作
# 使用 filter2D 函数应用 Roberts 算子卷积核
gradient_x = cv2.filter2D(image, cv2.CV_64F, roberts_x)
gradient_y = cv2.filter2D(image, cv2.CV_64F, roberts_y)# 3.计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、Roberts算子的结果和应用结果
plt.subplot(1, 4, 1)
plt.imshow(image, cmap='gray')
plt.title("Original Image")
plt.axis("off")plt.subplot(1, 4, 2)
plt.imshow(gradient_x, cmap='gray')
plt.title("Roberts X")
plt.axis("off")plt.subplot(1, 4, 3)
plt.imshow(gradient_y, cmap='gray')
plt.title("Roberts Y")
plt.axis("off")plt.subplot(1, 4, 4)
plt.imshow(gradient_magnitude, cmap='gray')
plt.title("Magnitude")
plt.axis("off")plt.show()

在这里插入图片描述

2、Prewitt 算子

利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用 3×3 模板对区域内的像素值进行计算,而Robert算子的模板为 2××2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)# 1.使用Prewitt算子
kernelx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], dtype=int)
kernely = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int)
# 2.卷积
gradient_x = cv2.filter2D(img, cv2.CV_64F, kernelx)
gradient_y = cv2.filter2D(img, cv2.CV_64F, kernely)
# 3
# 计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、水平梯度、垂直梯度、Prewitt算子的结果
plt.subplot(141), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(142), plt.imshow(gradient_x, cmap='gray'), plt.title('X'), plt.axis('off')
plt.subplot(143), plt.imshow(gradient_y, cmap='gray'), plt.title('Y'), plt.axis('off')
plt.subplot(144), plt.imshow(gradient_magnitude, cmap='gray'), plt.title('Prewitt Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

3、Laplace

拉普拉斯算子常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素。如果中心像素灰度高,提升中心像素的灰度;反之,降低中心像素的灰度。

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)# 使用拉普拉斯算子
laplacian = cv2.Laplacian(img, cv2.CV_64F)# 转换结果为8位图像
laplacian = np.uint8(np.absolute(laplacian))# 显示原图和拉普拉斯算子的结果
plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(122), plt.imshow(laplacian, cmap='gray'), plt.title('Laplacian Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

4、Canny算子

Canny基本步骤:
1.去噪:应用高斯滤波来平滑图像
2.计算图像的梯度,在水平和垂直方向上找到图像的边缘
3.非极大值抑制:保留梯度方向上的局部极大值,细化边缘
4.确定边缘。使用双阈值算法确定最终的边缘信息

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)# 使用Canny算子进行边缘检测
edges = cv2.Canny(image, 50, 150)  # 50和150是Canny算子的两个阈值# 显示原始图像和边缘检测结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(edges, cmap='gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

5、四种算子的比较

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/708125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(PWM呼吸灯)合泰开发板HT66F2390-----点灯大师

前言 上一篇文章相信大家已经成为了点灯高手了,那么进阶就是成为点灯大师 实现PWM呼吸灯 接下来就是直接的代码讲解了,不再讲PWM原理的 这里部分内容参考了另一个博主的文章 合泰杯——合泰单片机工程7之PWM输出 如果有小伙伴不理解引脚设置和delay函数…

华为数通方向HCIP-DataCom H12-821题库(单选题:501-520)

第501题 三台交换机运行RSTP协议,拓扑和配置情况如图所示。那么以下关于根桥的描述,正确的是哪一项? A、根桥是SWA B、根桥是SWB C、根桥是SWC D、根桥无法确定 参考答案:A 第502题 在华为设备中,以下哪一个命令可以实现BFD与静态默认路由联动? A、ip route-static 0.…

mysql数据库优化及sql调优,Java后端社招面试经历

Redis 什么是Redis?Redis的数据类型?使用Redis有哪些好处?Redis相比Memcached有哪些优势?Memcache与Redis的区别都有哪些?Redis是单进程单线程的?一个字符串类型的值能存储最大容量是多少?Redis的持久化机制是什么?各自的优缺点?Redis常见性能问题和解决方案:redis过…

docker容器配置mysql5.7主从复制

介绍 本文将通过docker创建3个mysql数据库容器,实现数据库主从复制功能,三个数据库容器分别为主库mysql-master:3307,从库mysql-slave-01:3308,mysql-slave-02:3309。使用的是mysql5.7版本 1. 拉取mongo镜像 docker pull mysql…

【网络那些事】

【云计算】 云计算:把计算资源放在某个地方,并通过互联网暴露出来,让用户可以按需使用计算资源的方式,就是所谓的云计算 云计算的三种服务: 云平台专业名词 日常叫法 亚马逊云叫法 云服务器 ECS (Elas…

循环结构:for循环,while循环,do-while,死循环

文章目录 for循环for案例:累加for循环在开发中的常见应用场景 whilewhile循环案例: for和while的区别:do-while三种循环的区别小结死循环 快捷键 ctrlaltt for循环 看循环执行多少次,就看有效数字有几个 快捷键 fori 示例代码&am…

Vuepress的使用

介绍 将markdown静态资源转换成html。 动态资源的转换还有很多,为什么要使用Vuepress? 目录分析 项目配置 详情 具体配置请看文档 插件配置 vuepress-theme-vdoing 主题插件 npm install vuepress-theme-vdoing -D先安装依赖配置主题 使用vuep…

论文设计任务书学习文档|基于智能搜索引擎的图书管理系统的设计与实现

文章目录 论文(设计)题目:基于智能搜索引擎的图书管理系统的设计与实现1、论文(设计)的主要任务及目标2、论文(设计)的主要内容3、论文(设计)的基本要求4、进度安排论文(设计)题目:基于智能搜索引擎的图书管理系统的设计与实现 1、论文(设计)的主要任务及目标 …

报错:板端IP与PC的IP相同

报错: 配置 实际上我配置并没有错。 服务器IP(就是本机)、板端IP、网关。 解决 我网卡配置了多个IP。一番删除添加还是报错。 于是点击服务器IP,换成别的,再换回来,可以了:

【大数据架构(3)】Lambda vs. Kappa Architecture-选择你需要的架构

文章目录 一. Data Processing Architectures1. Lambda Architecture1.1. 架构说明a. Data Ingestion Layerb. Batch Layer (Batch processing)c. Speed Layer (Real-Time Data Processing)d. Serving Layer 1.2. Lambda Architecture的优缺点1.3. 使用案例 2. Kappa Architect…

HTML+CSS+JS:花瓣登录组件

效果演示 实现了一个具有动态花朵背景和简洁登录框的登录页面效果。 Code <section><img src"./img/background.jpeg" class"background"><div class"login"><h2>Sign In</h2><div class"inputBox"…

重拾前端基础知识:CSS3

重拾前端基础知识&#xff1a;CSS3 前言边框圆角阴影图片 背景渐变文本字体多列动画与过渡2D 转换3D 转换过渡动画 网格布局弹性盒子&#xff08;重点&#xff09;父元素设置子元素设置 响应式设计设置 Viewport构建响应式网格视图12栅格媒体查询 案例讲解图片按钮分页 浏览器支…

【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解&#xff08;SVMD&#xff09;、多尺度特征提取&#xff08;MFE&#xff09;、聚类后展开支持向量机&#xff08;SVM&#xff09;…

rhcsa(rh134)

shell 查看用户shell a、如下查看/etc/shells文件列出了系统上所有可用的 shell&#xff08;具体的可用的 shell 列表可能会因不同的红帽版本和配置而有所不同&#xff09; &#xff08;如下图/etc/shells文件包含/bin/tmux并不意味着tmux是一个shell。实际上&#xff0c;/etc/…

CSS:弹性盒子Flexible Box布局

CSS:Flexible Box弹性盒子布局 一、flex布局原理 ​ flex是flexible Box的缩写,意为 ”弹性布局“&#xff0c;用来为盒状模型提供最大的灵活性&#xff0c;任何一个容器都可以指定为flex布局。 当我们的父盒子设置为flex布局之后&#xff0c;子元素的 float 、clear 和 vert…

4核8G服务器并发数多少?性能如何?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

WPF应用程序使用MVVM模式

文章目录 一、前言二、正文&#xff1a;模式 - WPF应用程序使用MVVM设计模式2.0 一些术语2.1 秩序与混乱2.2 MVVM模式的演变2.3 为何WPF开发者喜爱MVVM2.4 Demo应用程序2.5 路由命令逻辑2.6 ViewModel类层次结构2.7 ViewModelBase类2.8 CommandViewModel类2.9 MainWindowViewMo…

Vueuse:打造高效的 Vue.js 开发利器

Vueuse&#xff1a;打造高效的 Vue.js 开发利器 Vueuse 是一个功能强大的 Vue.js 生态系统工具库&#xff0c;它提供了一系列的可重用的 Vue 组件和函数&#xff0c;帮助开发者更轻松地构建复杂的应用程序。本文将介绍 Vueuse 的主要特点和用法&#xff0c;以及它在 Vue.js 开发…

【Vue的单选按钮不选中已解决亲测】

伙计&#xff0c;你是否因为后台给vue前端已经传入了对应的单选按钮的数据&#xff0c;为啥还是不选中呢&#xff01;&#xff1f; 这个问题实话我百度乐很多都不能解决我的问题&#xff0c;最后机智如我的发现乐vue的自身的问题&#xff0c;后端返回的数据类型如果是数字int类…

Git 指令深入浅出【1】—— 文件管理

Git 指令深入浅出【1】—— 文件管理 一、新建仓库二、配置1. 基本指令2. 免密配置3. 简化指令 三、管理文件1. 常用文件管理指令&#xff08;1&#xff09;基本指令工作区暂存区版本库 &#xff08;2&#xff09;日志&#xff08;3&#xff09;查看修改 2. 版本回退&#xff0…