算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之回文串问题

  • 01.回文子串
  • 02.最长回文子串
  • 03.分割回文串 IV
  • 04.分割回文串 II
  • 05.最长回文子序列
  • 06.让字符串成为回文串的最少插入次数

01.回文子串

题目链接:https://leetcode.cn/problems/palindromic-substrings/

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

示例 2:

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:

  • 1 <= s.length <= 1000
  • s 由小写英文字母组成

思路

  1. 预处理回文信息: 创建一个 dp 表,其中 dp[i][j] 表示字符串 s 中子串 s[i:j+1] 是否是回文串。

  2. 状态转移方程: 对于回文串,分析两头的元素:

    • 如果 s[i] != s[j],则不可能是回文串,dp[i][j] = 0

    • 如果

      s[i] == s[j]
      

      ,则根据长度分三种情况讨论:

      • 如果长度为 1,即 i == j,则一定是回文串,dp[i][j] = true
      • 如果长度为 2,即 i + 1 == j,则也一定是回文串,dp[i][j] = true
      • 如果长度大于 2,则需要看 [i + 1, j - 1] 区间的子串是否回文,dp[i][j] = dp[i + 1][j - 1]
  3. 初始化: 由于状态转移方程已经考虑了各种情况,无需额外初始化。

  4. 填表顺序: 根据状态转移方程,从下往上填写每一行。

  5. 返回值: 根据状态表达和题目要求,返回 dp 表中 true 的个数。

代码

class Solution {
public:int countSubstrings(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int sum=0;for(int i=n-1;i>=0;i--){for(int j=i;j<n;j++){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]) sum++;}}return sum;}
};

02.最长回文子串

题目链接:https://leetcode.cn/problems/longest-palindromic-substring/

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

思路

和上一题思路基本一致,但这里我们要返回字串,所以我们需要在原有算法上标记字串的开始位置和子串的长度。

代码

class Solution {
public:string longestPalindrome(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int len=1,begin=0;for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;if(dp[i][j]&&j-i+1>len) len=j-i+1,begin=i;}}return s.substr(begin,len);}
};

03.分割回文串 IV

题目链接:https://leetcode.cn/problems/palindrome-partitioning-iv/

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false

当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串

示例 1:

输入:s = "abcbdd"
输出:true
解释:"abcbdd" = "a" + "bcb" + "dd",三个子字符串都是回文的。

示例 2:

输入:s = "bcbddxy"
输出:false
解释:s 没办法被分割成 3 个回文子字符串。

提示:

  • 3 <= s.length <= 2000
  • s 只包含小写英文字母。

思路

其实这里我们可以依照第一题的解法将所有的子串都进行统计,再遍历计算每个分割位置组成的3个子串是否都符合回文子串即可。

代码

class Solution {
public:bool checkPartitioning(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) dp[i][j]=i+1<j?dp[i+1][j-1]:true;for(int i=1;i<n-1;i++)for(int j=i;j<n-1;++j)if(dp[0][i-1]&&dp[i][j]&&dp[j+1][n-1]) return true;return false;}
};

04.分割回文串 II

题目链接:https://leetcode.cn/problems/palindrome-partitioning-ii/

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。

返回符合要求的 最少分割次数

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a"
输出:0

示例 3:

输入:s = "ab"
输出:1

提示:

  • 1 <= s.length <= 2000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i] 表示字符串 s[0, i] 区间上的字符串,最少分割的次数。

  2. 状态转移方程: 通常考虑最后一个位置的信息。设 0 <= j <= i,那么可以根据 [j, i] 位置上的子串是否是回文串分成以下两类:

    • 如果 [j, i] 位置上的子串能够构成一个回文串,那么 dp[i] 就等于 [0, j - 1] 区间上最少回文串的个数 + 1,即 dp[i] = dp[j - 1] + 1
    • 如果 [j, i] 位置上的子串不能构成一个回文串,此时 j 位置就不用考虑。

    由于求的是最小值,因此需要循环遍历 j 的取值,取最小值。

  3. 优化: 在状态转移方程中,需要快速判断字符串中的子串是否回文。因此,可以先处理一个 dp 表,其中保存所有子串是否回文的信息。

  4. 初始化: 在循环遍历 j 之前,处理 j == 0 的情况。此时,表示的区间是 [0, i]。如果 [0, i] 区间上的字符串已经是回文串了,最小的回文串就是 1j 往后的值就不用遍历了。为防止在求 min 操作时,0 干扰结果,将表中的值初始化为「无穷大」。

  5. 填表顺序: 从左往右填写。

  6. 返回值: 根据状态表达,返回 dp[n - 1]

代码

class Solution {
public:int minCut(string s) {int n=s.size();vector<vector<bool>> isp(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;j++)if(s[i]==s[j]) isp[i][j]=i+1<j?isp[i+1][j-1]:true;vector<int> dp(n,INT_MAX);for(int i=0;i<n;++i){if(isp[0][i]) dp[i]=0;else{for(int j=1;j<=i;j++)if(isp[j][i]) dp[i]=min(dp[i],dp[j-1]+1);}}return dp[n-1];}
};

05.最长回文子序列

题目链接:https://leetcode.cn/problems/longest-palindromic-subsequence/

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。 

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区间内的所有子序列中,最长的回文子序列的长度。

  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,分为以下两种情况:

    • s[i] == s[j] 时,[i, j] 区间上的最长回文子序列,应该是 [i + 1, j - 1] 区间内的那个最长回文子序列首尾填上 s[i]s[j],此时 dp[i][j] = dp[i + 1][j - 1] + 2
    • s[i] != s[j] 时,这两个元素就不能同时添加在一个回文串的左右,那么就应该让 s[i] 单独加在一个序列的左边,或者让 s[j] 单独放在一个序列的右边,看看这两种情况下的最大值:
      • 单独加入 s[i] 后的区间在 [i, j - 1],此时最长的回文序列的长度就是 dp[i][j - 1]
      • 单独加入 s[j] 后的区间在 [i + 1, j],此时最长的回文序列的长度就是 dp[i + 1][j]

    取两者的最大值,于是 dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])

  3. 初始化: 需要处理两种边界情况:

    • i == j 时,区间内只有一个字符,此时 dp[i][j] = 1
    • i + 1 == j 时,区间内有两个字符,如果这两个字符相同,dp[i][j] = 2,否则 dp[i][j] = 0

    在填表的时候,可以同步处理第一种边界情况,对于第二种边界情况,dp[i + 1][j - 1] 的值为 0,不会影响最终的结果,因此可以不用考虑。

  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。

  5. 返回值: 根据「状态表达」,返回 [0, n -1] 区域上的最长回文序列的长度,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int longestPalindromeSubseq(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){dp[i][i]=1;for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;else dp[i][j]=max(dp[i+1][j],dp[i][j-1]);}}return dp[0][n-1];}
};

06.让字符串成为回文串的最少插入次数

题目链接:https://leetcode.cn/problems/minimum-insertion-steps-to-make-a-string-palindrome/

给你一个字符串 s ,每一次操作你都可以在字符串的任意位置插入任意字符。

请你返回让 s 成为回文串的 最少操作次数

「回文串」是正读和反读都相同的字符串。

示例 1:

输入:s = "zzazz"
输出:0
解释:字符串 "zzazz" 已经是回文串了,所以不需要做任何插入操作。

示例 2:

输入:s = "mbadm"
输出:2
解释:字符串可变为 "mbdadbm" 或者 "mdbabdm" 。

示例 3:

输入:s = "leetcode"
输出:5
解释:插入 5 个字符后字符串变为 "leetcodocteel" 。

提示:

  • 1 <= s.length <= 500
  • s 中所有字符都是小写字母。

思路

  1. 状态表达:i 位置为结尾,定义状态表达 dp[i][j] 表示字符串 s[i, j] 区域成为回文子串的最少插入次数。
  2. 状态转移方程: 回文子序列和回文子串的分析方式一般都是选择这段区域的「左右端点」的字符情况来分析。因为如果一个序列是回文串的话,「去掉首尾两个元素之后依旧是回文串」,「首尾加上两个相同的元素之后也依旧是回文串」。根据首尾元素的不同,可以分为以下两种情况:
    • s[i] == s[j] 时,[i, j] 区间内成为回文子串的最少插入次数,取决于 [i + 1, j - 1] 区间内成为回文子串的最少插入次数。若 i >= j - 1i == j - 1[i + 1, j - 1] 不构成合法区间),此时只有 1 ~ 2 个相同的字符, [i, j] 区间一定是回文子串,成为回文子串的最少插入次数是 0。此时 dp[i][j] = i >= j - 1 ? 0 : dp[i + 1][j - 1]
    • s[i] != s[j] 时,需要在区间的最右边或最左边插入一个字符,取决于 [i + 1, j][i, j + 1] 区间内成为回文子串的最少插入次数。此时 dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1
  3. 初始化: 根据「状态转移方程」,没有不能递推表达的值,无需初始化。
  4. 填表顺序: 根据「状态转移」,dp[i + 1] 表示下一行的位置,dp[j - 1] 表示前一列的位置。因此填表顺序应该是「从下往上填写每一行」,「每一行从左往右」。
  5. 返回值: 根据「状态表达」,返回 [0, n - 1] 区域上成为回文子串的最少插入次数,因此需要返回 dp[0][n - 1]

代码

class Solution {
public:int minInsertions(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;i--){for(int j=i+1;j<n;j++){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1];else dp[i][j]=min(dp[i+1][j],dp[i][j-1])+1;}}return dp[0][n-1];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707759.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

雾锁王国服务器官方配置要求说明

雾锁王国/Enshrouded服务器CPU内存配置如何选择&#xff1f;阿里云服务器网aliyunfuwuqi.com建议选择8核32G配置&#xff0c;支持4人玩家畅玩&#xff0c;自带10M公网带宽&#xff0c;1个月90元&#xff0c;3个月271元&#xff0c;幻兽帕鲁服务器申请页面 https://t.aliyun.com…

【机器人最短路径规划问题(栅格地图)】基于蚁群算法求解

基于蚁群算法求解机器人最短路径规划问题的仿真结果 仿真结果 收敛曲线变化趋势 蚁群算法求解最优解的机器人运动路径 各代蚂蚁求解机器人最短路径的运动轨迹

Java+SpringBoot+Vue:瑜伽馆管理的黄金组合

✍✍计算机毕业编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java、…

java工程师面试突击中华石杉,开发人员必学

如何高效的学习MyBatis源码呢&#xff1f; 市面上真正适合学习的MyBatis资料太少&#xff0c;有的书或资料虽然讲得比较深入&#xff0c;但是语言晦涩难懂&#xff0c;大多数人看完这些书基本都是从入门到放弃。学透MyBatis源码难道就真的就没有一种适合大多数同学的方法吗&am…

Linux系统安装使用nginx

1.编译安装Nginx服务 (1)关闭防火墙&#xff0c;将安装nginx所需要软件包传到/opt目录下 systemctl stop firewalld systemctl disable firewalld setenforce 0 将压缩包传入到/opt目录下 cd /opt wget http://nginx.org/download/nginx-1.18.0.tar.gz (2). 安装依赖…

从新手到专家:AutoCAD 完全指南

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 引言 AutoCAD是一款广泛用于工程设计和绘图的…

Redisson 3.18.0版本解决failover相关问题

前言 Redisson 在历史多个版本都出现了failover期间报错的问题并且目前没有一个版本可以完全解决这个问题&#xff0c;所以在当前使用版本3.18.0基础上做了二次开发&#xff0c;达到降低业务由于redis遇到问题导致不可用。 背景 Redisson 作为业务线使用的Redis 客户端&…

基于JAVA的就医保险管理系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 科室档案模块2.2 医生档案模块2.3 预约挂号模块2.4 我的挂号模块 三、系统展示四、核心代码4.1 用户查询全部医生4.2 新增医生4.3 查询科室4.4 新增号源4.5 预约号源 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVue…

在独立Unity工程中集成Vortex Studio

本文首发于&#xff1a;Unity3D入门教程09.01&#xff1a;在独立Unity工程中集成Vortex Studio 目的 在Unity中使用Vortex Studio引擎模拟Unity场景中的任何资源。 工程 打开桌面Unity Hub快捷方式 点击Open选择需要打开的工程&#xff0c;这里选择官方提供的默认工程C:\CM…

如何实现双向循环链表

博主主页&#xff1a;17_Kevin-CSDN博客 收录专栏&#xff1a;《数据结构》 引言 双向带头循环链表是一种常见的数据结构&#xff0c;它具有双向遍历的特性&#xff0c;并且在表头和表尾之间形成一个循环。本文将深入探讨双向带头循环链表的结构、操作和应用场景&#xff0c;帮…

【医学影像】LIDC-IDRI数据集的无痛制作

LIDC-IDRI数据集制作 0.下载0.0 链接汇总0.1 步骤 1.合成CT图reference 0.下载 0.0 链接汇总 LIDC-IDRI官方网址&#xff1a;https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteriaLIDC-IDRINBIA Data Retriever 下载链接&#xff1a;https://wiki.canceri…

Golang使用Swag搭建api文档

1. 简介 Gin是Golang目前最为常用的Web框架之一。 公司项目验收需要API接口设计说明书&#xff08;Golang后端服务基于Gin框架编写&#xff09;&#xff0c;编写任务自然就落到了我们研发人员身上。 项目经理提供了文档模板&#xff0c;让我们参考模板来手动编写&#xff0c;要…

5.WEB渗透测试-前置基础知识-常用的dos命令

内容参考于&#xff1a; 易锦网校会员专享课 上一篇内容&#xff1a;4.WEB渗透测试-前置基础知识-快速搭建渗透环境&#xff08;下&#xff09;-CSDN博客 常用的100个CMD指令 1.gpedit.msc—–组策略 2. sndrec32——-录音机 3. Nslookup——-IP地址侦测器 &#xff0c;是一个…

Unity中的UI系统之GUI

目录 概述工作原理和主要作用基础控件重要参数及文本和按钮多选框和单选框输入框和拖动条图片绘制和框 复合控件工具栏和选择网络滚动视图和分组窗口 自定义整体样式自定义皮肤样式 概述 什么是UI系统 UI是User Interface&#xff08;用户界面&#xff09;的简称&#xff0c;用…

全域增长方法论:帮助品牌实现科学经营,助力长效生意增长

前两年由于疫情反复、供给需求收缩等条件制约&#xff0c;品牌业务均受到不同程度的影响。以双十一和618电商大促为例&#xff0c;就相比往年颇显“惨淡”&#xff0c;大多品牌营销都无法达到理想预期。 随着市场环境不断开放&#xff0c;2023年营销行业开始从低迷期走上了高速…

SDWAN异地组网难在哪?怎么解决?

SD-WAN作为一种先进的网络技术&#xff0c;为企业提供了更加灵活和高效的网络连接方案。然而&#xff0c;在异地组网的过程中&#xff0c;SD-WAN也面临一些挑战。本文将探讨SD-WAN异地组网所面临的难题&#xff0c;并提供相应的解决方案。 挑战一&#xff1a;网络延迟和不稳定性…

Jupyter Notebook 下载+简单设置

这里写目录标题 1. Jupyter Notebook安装2.切换打开别的盘3. 创建代码文件4.为jupyter notebook添加目录 (Jupyter安装拓展nbextensions)step1&#xff1a;安装命令step2&#xff1a;用户配置step3&#xff1a;上述过程均完成后&#xff0c;打开jupyter notebook就会发现界面多…

常见的socket函数封装和多进程和多线程实现服务器并发

常见的socket函数封装和多进程和多线程实现服务器并发 1.常见的socket函数封装2.多进程和多线程实现服务器的并发2.1多进程服务器2.2多线程服务器2.3运行效果 1.常见的socket函数封装 accept函数或者read函数是阻塞函数&#xff0c;会被信号打断&#xff0c;我们不能让它停止&a…

哪里申请EV代码签名证书?

EV代码签名证书是一种高级别的数字证书&#xff0c;它通过严格的验证流程&#xff0c;确保软件发布者身份的真实性和可信度。相较于普通代码签名证书&#xff0c;EV证书采用了更严格的验证标准&#xff0c;包括对企业身份、法律地位、组织结构多个方面的核实。这使得EV证书成为…

06 Qt自绘组件:Switch动画开关组件

系列文章目录 01 Qt自定义风格控件的基本原则-CSDN博客 02 从QLabel聊起&#xff1a;自定义控件扩展-图片控件-CSDN博客 03 从QLabel聊起&#xff1a;自定义控件扩展-文本控件-CSDN博客 04 自定义Button组件&#xff1a;令人抓狂的QToolButton文本图标居中问题-CSDN博客 0…