【大厂AI课学习笔记NO.51】2.3深度学习开发任务实例(4)计算机视觉实际应用的特点

今天考试通过腾讯云人工智能从业者TCA级别的认证了!

还是很开心的,也看不到什么更好的方向,把一切能利用的时间用来学习,总是对的。

我把自己考试通过的学习笔记,都分享到这里了,另外还有一个比较全的思维脑图,我导出为JPG文件了。下载地址在这里:https://download.csdn.net/download/giszz/88868909

这个号码真好,88868909,我喜欢。

今天来总结计算机视觉实际应用的特点。

机器学习和深度学习,总算是搞明白了。今天考试,有好几个考点,都和这个有关系。

我理解的机器学习和深度学习的区别和联系

  • 机器学习包含了深度学习;
  • 深度学习主要是神经网络技术,这是Hinton这个大神,也就是人工智能之父,40年坚持的结果;
  • 机器学习主要是特征工程的存在,有标注,也有标签,深度学习也需要数据标注,但是基本不需要做特征工程,也就是人工进行数据预处理、特征抽取、特征选择、特征这些工作;
  • 深度学习只关注端到端,就是输入到输出的过程。其中也有多隐层神经网络等,在例子中的前馈神经网络,是最简单的神经网络模型;
  • 机器学习由于有人的参与,所以可解释性很强,很多时候其实是为了特定任务而去做的,普适性不是很强,而深度学习,自己就能学习;
  • 比如在图片分类中,机器学习要对图片进行特征工程,就是打标签,找出汽车车身的特征,而深度学习,直接用卷积算法就可以,滑动窗口,整个图片使用同一个权重,得到特征值,通过多层神经网络,学习哪个是汽车;
  • 所以说机器学习是人工来提取特征,深度学习是从数据中创建新的特征;
  • 机器学习要把复杂的工作,拆分为小的任务,逐个攻克;深度学习只关注端到端;
  • 机器学习可以使用少量的数据,就能预测,而深度学习不行;
  • 机器学习用低性能的计算机就能计算,而深度学习不行;

大概就是这样。

这是整个人工智能课程的核心。

当然,现在大家都普遍关心的,是sora,大模型LLM等,这肯定更有魅力的应用方向。大模型的出现,让人工智能真的是走向了新的高峰。

有人说,之前的人工智能,都是针对特定任务的,没有普适性。从大模型的出现来看,AGI也许已经在某个实验室里面实现了。

AGI是Artificial General Intelligence的首字母缩写,意为人工通用智能,也称为强人工智能。它指的是一种具有类似于人类全面智能的人工智能系统,可以处理不同领域的任务和问题,包括学习、推理、理解语言、感知环境、创造性思考等多种能力。与只能处理特定任务的狭窄人工智能(Narrow AI)不同,AGI旨在实现人类智能的全面模拟,并可以在不同场景和任务中表现出与人类相似的智能水平。

AGI的实现需要融合多个领域的知识和技术,包括机器学习、自然语言处理、计算机视觉、机器人技术等,同时也需要解决许多挑战和难题,如理解自然语言、掌握常识知识、具备有效的推理能力、能够感知和适应不同的环境等。

虽然AGI的实现仍面临着许多挑战和风险,如数据隐私、伦理道德等问题,但其对人类社会的影响和意义是巨大的。AGI可以帮助我们解决许多重大问题,如环境保护、医疗保健、安全保障等,同时也可以在各个领域中充当人类的助手、合作伙伴甚至是导师的角色,推动人类社会的进步和发展。

因此,AGI是当前人工智能领域的一个重要研究方向,也是未来人工智能发展的一个重要趋势。

言归正传,我们今天该学习机器视觉的一些普通特性了。

看,就是这些核心的内容。

很多朋友又要感觉没意思了,觉得没有关键技术名词,没有英文对照,没有示例代码等等。

其实,这些理念,是更重要的东西。

当前我们的任务,是要给玩具小车,加上自动识别标识牌的能力,我们暂且不管,边缘端的情况,我们来看这些要注意的事项。

  • 样本具象化。图像是具体表现形式,除了主体外,还有大量的信息,如背景,光照等。
  • 算法光线敏感性。侧光,面向光,背光,强光,暗光,都有影响,如果样本没有这些光线的图片,效果会欠佳。
  • 理解硬件条件可能造成的图片效果偏差。带来色差、模糊、角度变化,样本如果没有这些资料,效果会欠佳。
  • 客户理解的偏差。不理解光线影响,不能清晰的表达述求,都在需求梳理时摸清,否则影响交付。

前面都好说,有经验的项目人员,就能知道怎么来理解了。

最后的客户理解偏差,反而是我在实践中,感觉最头疼的。

客户认为,这不是很简单的事吗!

这要很久吗?!

这那个什么什么公司,不是早就做出来了吗?我们只是要做个一样的,甚至还更简答的而已!

好吧,客户不知道,除了识别这些标志,我们还要看,你这个场地,有什么特点,光线,硬件条件等等,包括这些小车搭载的摄像机,是多少分辨率!

延伸学习:


在计算机视觉的实际应用中,有许多关键的注意事项和经验,这些可以影响算法的准确性和效率。以下是一些主要的考虑因素:

  1. 图像质量:高质量的图像对于计算机视觉算法至关重要。图像的清晰度、分辨率和噪声水平都会影响算法的性能。因此,在实际应用中,需要确保使用的图像采集设备能够提供高质量的图像,或者采用图像增强技术来改善图像质量。
  2. 光照条件:光照条件是影响计算机视觉算法性能的另一个重要因素。不同的光照条件(如亮度、颜色温度、方向等)会对图像的外观产生显著影响,从而影响算法的准确性。为了解决这个问题,可以采用背景光照补偿技术、阴影去除技术等,以提升计算机视觉系统的鲁棒性。同时,在实际应用中,应尽量选择光线充足、均匀的环境,避免强光和暗光交替的情况出现。
  3. 数据集偏差:训练数据集的选择和准备对于计算机视觉算法的性能至关重要。如果训练数据集中存在偏差,比如样本不平衡、类别不均衡等,可能导致算法的泛化能力下降。为了解决这个问题,可以采用数据集采样均衡化、数据增强等技术,以改善模型的性能。同时,应注意数据的质量和多样性,确保数据集具有足够的标签和多样的样本。
  4. 镜头选择:在计算机视觉应用中,镜头的选择也会影响图像的质量和算法的准确性。不同的镜头有不同的焦距、光圈和景深等特性,这些特性会影响图像的清晰度和细节表现。因此,在实际应用中,应根据具体的需求选择合适的镜头。
  5. 避免畸变:在定位及高精度测量的系统中,畸变是一个需要特别注意的问题。畸变会导致图像中的物体形状发生扭曲,从而影响算法的准确性。为了解决这个问题,可以采用畸变校正技术,或者在系统标定时使用远心镜头等特殊镜头来减小畸变的影响。
  6. 恰当的照明与曝光:照明和曝光是影响图像质量的关键因素之一。如果照明不足或曝光过度,图像将不能提供足够的反差和细节信息,这将严重影响算法的准确性。因此,在实际应用中,需要选择适合的灯源和曝光设置,以确保图像具有足够的反差和细节信息。同时,还应注意系统周围环境的影响,避免其他光源对图像产生干扰。
  7. 算法选择与调优:对于不同的视觉任务,可能有多种不同的算法可供选择。在实际应用中,应根据任务的要求和数据集的特点选择合适的算法,并进行必要的调优。这包括选择合适的网络结构、调整超参数、使用正则化技术等手段来提高算法的准确性和效率。
  8. 实时性与性能平衡:在计算机视觉应用中,实时性和性能之间往往存在一定的权衡关系。为了提高算法的实时性,可能需要牺牲一部分性能;反之,为了提高性能,可能需要增加计算复杂度和时间成本。因此,在实际应用中,需要根据具体的需求和场景来平衡实时性和性能之间的关系。

总之,在计算机视觉的实际应用中,需要考虑多个方面的因素来确保算法的准确性和效率。通过注意以上提到的注意事项和经验,可以更好地应用计算机视觉技术来解决实际问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/706832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51单片机 wifi连接

一、基本概念 ESP8266是一款集成了WiFi功能的高性能芯片,广泛应用于物联网设备、智能家居、传感器网络等领域。以下是ESP8266的详细讲解: 1. 功能特点:ESP8266集成了TCP/IP协议栈,支持STA(Station)和AP&am…

15. QML中一些相关的图形效果汇总

1.说明 本篇博客主要记录一些在QML中,对图片进行操作的一些控件 2.示例代码 博客中用到的两张图片分别如下所示: 2.1 混合效果 效果展示: 相关代码: import QtQuick 2.2 import QtQuick.Window 2.1 import QtQuick.Cont…

论文阅读:SOLOv2: Dynamic, Faster and Stronger

目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:[2003.10152] SOLOv2: Dynamic and Fast Instance Segmentation (arxiv.org) 代码地址:GitHub - WXinlong/SOLO: SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS…

< JavaScript技巧:如何优雅的使用 【正则】校验 >

文章目录 👉 一、正则表达式的概念👉 二、常见使用正则表达式的方法① RegExp 对象方法1. 创建 RegExp 对象的语法2. RegExp对象方法① compile(value)② exec(value)③ test(value)③ reg.toString() ② 支持正则表达式的 String 对象的方法1. search()…

飞天使-学以致用-devops知识点1-安装gitlabharbor

文章目录 rpm 安装gitlab页面配置配置secretsecret 查看信息-chatgpt回复 为项目配置webhook,等jenkins部署完毕后在配置卸载 harbor配置secret所有k8s集群节点安装信任 http rpm 安装gitlab # 下载安装包 wget https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/gitla…

统计分析笔记3

文章目录 统计检验选择正确的统计检验统计检验是做什么的?何时进行统计检验选择参数化测试:回归、比较或相关性选择非参数检验 假设检验的假设条件skewness什么是零偏度right skewleft skew计算skewnesswhat to do if your data is skewed kurtosis怎么计…

BevFusion (2): nuScenes 数据介绍及点云可视化

1. nuScenes 数据集 1.1 概述 nuScenes 数据集 (pronounced /nu:ːsiː:nz/) 是由 Motional (以前称为 nuTonomy) 团队开发的自动驾驶公共大型数据集。nuScenes 数据集的灵感来自于开创性的 KITTI 数据集。 nuScenes 是第一个提供自动驾驶车辆整个传感器套件 (6 个摄像头、1 …

计算机网络:IP

引言: IP协议是互联网协议族中的核心协议之一,负责为数据包在网络中传输提供路由寻址。它定义了数据包如何在互联网上从源地址传输到目的地址的规则和流程。IP协议使得各种不同类型的网络设备能够相互通信,实现了全球范围内的信息交换。 目录…

Qt项目:网络1

文章目录 项目:网路项目1:主机信息查询1.1 QHostInfo类和QNetworkInterface类1.2 主机信息查询项目实现 项目2:基于HTTP的网络应用程序2.1 项目中用到的函数详解2.2 主要源码 项目:网路 项目1:主机信息查询 使用QHostI…

基于vue的图书管理系统的设计与实现

高校师生在教学中承受的压力越大就对知识拥有了更多的需求,而满足这一需求的最佳场所无疑就是图书馆。当前虽然信息技术在各个方面都发挥出重要作用,但是在相当多的高校图书馆中依然由工作人员手动完成图书借阅、归还及逾期提醒等所有工作,在…

如何使用Logstash搜集日志传输到es集群并使用kibana检测

引言:上一期我们进行了对Elasticsearch和kibana的部署,今天我们来解决如何使用Logstash搜集日志传输到es集群并使用kibana检测 目录 Logstash部署 1.安装配置Logstash (1)安装 (2)测试文件 &#xff…

集群分发脚本xsync

集群分发脚本xsync 一、简介二、环境准备三、添加到机器的 hosts 文件四、ping 命令测试五、SSH 配置5.1.本地先生成公钥和私钥5.2.将公钥拷贝到其他机器 六、xsync 脚本编写6.1.安装 rsync6.2.新建 xsync.sh6.3.xsync.sh脚本6.4.赋予脚本执行权限6.5.测试 endl 一、简介 配置…

完全分布式运行模式

完全分布式运行模式 分析:之前已经配置完成 ​ 1)准备3台客户机(关闭防火墙、静态ip、主机名称) ​ 2)安装JDK ​ 3)配置环境变量 ​ 4)安装Hadoop ​ 5)配置环境变量 ​ 6&am…

163邮箱SMTP端口号及服务器地址详细设置?

163邮箱SMTP端口号是什么?163邮件SMTP设置教程? 除了基本的邮箱账号和密码外,还需要了解SMTP服务器地址和端口号,以及相应的设置。这些设置对于确保邮件能够顺利发送至关重要。下面,蜂邮EDM将详细介绍163邮箱SMTP端口…

Ubuntu常用状态命令

目录 一、温度 1,查看CPU温度 2,查看硬盘温度 二、CPU状态 1,显示CPU的详细信息,包括型号、频率、缓存等 2,显示CPU架构、CPU核心数、线程数、频率等信息 三、登录状态 1,查看成功登录的用户 2&am…

2024年腾讯云4核8G12M配置的轻量服务器同时支持多大访问量?

腾讯云4核8G服务器支持多少人在线访问?支持25人同时访问。实际上程序效率不同支持人数在线人数不同,公网带宽也是影响4核8G服务器并发数的一大因素,假设公网带宽太小,流量直接卡在入口,4核8G配置的CPU内存也会造成计算…

第12届生物发酵产品与技术装备展火热登场-通用环境控制技术

参展企业介绍 合肥通用环境控制技术有限责任公司隶属于中国机械工业集团有限公司(世界500强排名279),是中央直接管理的国有重要骨干上市央企(国机通用 600444),是国家级高新技术企业、国家火炬计划重点高新…

区块链智能合约开发

一.区块链的回顾 1.区块链 区块链实质上是一个去中心化、分布式的可进行交易的数据库或账本 特征: 去中心化:简单来说,在网络上一个或多个服务器瘫痪的情况下,应用或服务仍然能够持续地运行,这就是去中心化。服务和应用部署在…

Mendix 10.7 发布- Go Mac It!

在我们上个月发布了硕果累累的 Mendix 10.6 MTS 之后,您是否还没有抚平激动的情绪?好吧,不管您是否已经准备好,本月将带来另一个您想知道的大亮点——Mac版Studio Pro!但这还不是全部。本月,我们还将推出Re…

Kafka安全模式之身份认证

一、简介 Kafka作为一个分布式的发布-订阅消息系统,在日常项目中被频繁使用,通常情况下无论是生产者还是消费者只要订阅Topic后,即可进行消息的发送和接收。而kafka在0.9.0.0版本后添加了身份认证和权限控制两种安全服务,本文主要…