Python爬虫中的单线程、多线程问题(文末送书)

前言

在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。

一、进程和线程

进程可以理解为是正在运行的程序的实例。进程是拥有资源的独立单位,而线程不是独立的单位。由于每一次调度进程的开销比较大,为此才引入的线程。一个进程可以拥有多个线程,一个进程中可以同时存在多个线程,这些线程共享该进程的资源,线程的切换消耗是很小的。因此在操作系统中引入进程的目的是更好地使多道程序并发执行,提高资源利用率和系统吞吐量;而引入线程的目的则是减小程序在并发执行时所付出的时空开销,提高操作系统的并发性能。
下面用简单的例子进行描述,打开本地计算机的”任务管理器”如图1所示,这些正在运行的程序叫作进程。如果将一个进程比喻成一个工作,指定10个人来做这份工作,这10个人就是10个线程。因此,在一定的范围内,多线程效率比单线程效率更高。
在这里插入图片描述
图1.任务管理器

二、Python中的多线程与单线程

在我们平时学习的过程中,使用的主要是单线程爬虫。一般来说,如果爬取的资源不是特别大,使用单线程即可。在Python中,默认情况下是单线程的,简单理解为:代码是按顺序依次运行的,比如先运行第一行代码,再运行第二行,依次类推。在前面章节所学习知识中,都是以单线程的形式实践的。
举个例子,批量下载某网站的图片,由于下载图片是一个耗时的操作,如果依然采用单线程的方式下载,那么效率就会特别低,意味着需要消耗更多的时间等待下载。为了节约时间,这时候我们就可以考虑使用多线程的方式来下载图片。
threading模块是Python中专门用来做多线程编程的模块,它对thread进行了封装,使用更加方便。例如需要对写代码和玩游戏两个事件使用多线程进行,案例代码如下。

import threading
import time
# 定义第一个
def coding():for x in range(3):print('%s正在写代码\n' % x)time.sleep(1)
# 定义第二个
def playing():for x in range(3):print('%s正在玩游戏\n' % x)time.sleep(1)
# 如果使用多线程执行
def multi_thread():start = time.time()#  Thread创建第一个线程,target参数为函数命t1 = threading.Thread(target=coding)t1.start()  # 启动线程# 创建第二个线程t2 = threading.Thread(target=playing)t2.start()# join是确保thread子线程执行完毕后才能执行下一个线程t1.join()t2.join()end = time.time()running_time = end - start  print('总共运行时间 : %.5f 秒' % running_time)
# 执行
if __name__ == '__main__':multi_thread()  # 执行单线程

运行结果如图2所示:
图2.多线程运行结果
图2.多线程运行结果
那么执行单线程会消耗多少时间,案例代码如下所示。

import time
# 定义第一个
def coding():for x in range(3):print('%s正在写代码\n' % x)time.sleep(1)
# 定义第二个
def playing():start = time.time()for x in range(3):print('%s正在玩游戏\n' % x)time.sleep(1)end = time.time()running_time = end - startprint('总共运行时间 : %.5f 秒' % running_time)
def single_thread():coding()playing()
# 执行
if __name__ == '__main__':single_thread()  # 执行单线程

运行结果如图3所示:
在这里插入图片描述
图3.单线程运行结果
经过以上多线程和单线程的运行结果,可以看出多线程中写代码和玩游戏是一起执行的,单线程中则是先写代码再玩游戏。从时间上来说,可能只有细微的差距,当执行工作量很大的时候,便会发现多线程消耗的时间会更少,从这个案例中我们也可以知道,当所需要执行的任务并不多的时候,只需要编写单线程即可。

三、单线程改为多线程

以某直播的图片爬取为例,案例代码如下:

import requests
from lxml import etree
import time
import osdirpath = '图片/'
if not os.path.exists(dirpath):os.mkdir(dirpath)  # 创建文件夹header = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.162 Safari/537.36'
}
def get_photo():url = 'https://www.huya.com/g/4079/'  # 目标网站response = requests.get(url=url, headers=header)  # 发送请求data = etree.HTML(response.text)  # 转化为html格式return datadef jiexi():data = get_photo()image_url = data.xpath('//a//img//@data-original')image_name = data.xpath('//a//img[@class="pic"]//@alt')for ur, name in zip(image_url, image_name):url = ur.replace('?imageview/4/0/w/338/h/190/blur/1', '')title = name + '.jpg'response = requests.get(url=url, headers=header)  # 在此发送新的请求with open(dirpath + title, 'wb') as f:f.write(response.content)print("下载成功" + name)time.sleep(2)if __name__ == '__main__':jiexi()

如果需要修改为多线程爬虫,只需要修改主函数即可,例如创建4个线程进行爬取,案例代码如下所示:

if __name__ == "__main__":threads = []start = time.time()# 创建四个进程for i in range(1, 5):thread = threading.Thread(target=jiexi(), args=(i,))threads.append(thread)thread.start()for thread in threads:thread.join()end = time.time()running_time = end - startprint('总共消耗时间 : %.5f 秒' % running_time)print("全部完成!")  # 主程序

文末免费送书:Python网络爬虫入门到实战

本书介绍了Python3网络爬虫的常见技术。首先介绍了网页的基础知识,然后介绍了urllib、Requests请求库以及XPath、Beautiful Soup等解析库,接着介绍了selenium对动态网站的爬取和Scrapy爬虫框架,最后介绍了Linux基础,便于读者自主部署编写好的爬虫脚本。本书所有代码和相关素材可以到GitHub下载获取,地址为https://github.com/sfvsfv/Crawer。
本书主要面向对网络爬虫感兴趣的初学者。。
在这里插入图片描述

抽奖方式: 评论区随机抽取3位小伙伴免费送出!
参与方式: 关注博主、点赞、收藏、评论区评论“人生苦短,我用Python!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
活动截止时间: 2024-3-04 20:00:00
京东: 购买链接传送门

😄😄😄名单公布方式: 下期活动开始将在评论区和私信一并公布,中奖者请三天内提供信息😄😄😄

本书内容
本书通过简单易懂的案例,讲解Python语言的爬虫技术。全书共分为8章,第1章为网页的内容,第2~7章为爬虫的内容,第8章为Linux基础。
第1章:介绍了HTML和CSS的基础知识,虽然本章并不是直接与爬虫相关,但它是学习爬虫技术的基础。对于已经掌握基本网页基础的读者,可以选择跳过该章。
第2章:正式进入爬虫技术的学习阶段,这一章介绍了最基本的两个请求库(urllib和Requests),有知识点的讲解,也有实战案例的讲解。
第3章:本章对正则表达式做了详细的描述,同时有案例的实践。学完本章就可以掌握最基本的爬虫技术了。
第4章:主要介绍XPath解析库,配有实际的案例进行讲解,以帮助读者加深理解和巩固。
第5章:主要介绍另一个解析库Beautiful Soup,它在提取数据中也很方便,对相关知识点以及实际的案例都有所讲解。XPath和Beautiful Soup可以使信息的提取更加方便、快捷,是爬虫必备利器。
第6章:主要介绍selenium自动化测试。现在越来越多的网站内容是经过 JavaScript 渲染得到的,而原始 HTML 文本可能不包含任何有效内容,使用模块selenium实现模拟浏览器进行数据爬取是非常好的选择。
第7章:在大规模数据的爬取中,不太用得上基础模块,Scrapy 是目前使用最广泛的爬虫框架之一,本章介绍了Scrapy爬虫框架的详细搭建和实践。针对数据存储过程部分使用的MySql数据库,整章有多个实际的案例,以帮助读者加深理解和巩固。
第8章:主要介绍了Linux的基础知识点,以帮助读者能够在服务器部署脚本。
相关资源
本书所有代码和相关素材可以到GitHub下载获取,地址为https://github.com/sfvsfv/Crawer。关于代码的实用性需要声明:所有代码都是笔者在写书阶段编写的,如果有部分爬虫脚本失效,有可能是网站的结构发生了变化。希望读者在阅读本书的过程中,以学习笔者所介绍的方法为主。
Python网络爬虫入门到实战致谢
本书的撰写与出版得益于同行众多同类教程的启发,以及陈姗姗老师和同伴周培源的帮助,在此深表感谢。同时也感谢一路走来支持笔者的读者。由于本人水平有限,书中难免有不妥之处,诚挚期盼专家和广大读者批评指正。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705436.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Flink精讲】Flink反压调优

Flink 网络流控及反压的介绍: Apache Flink学习网 反压的理解 简单来说, Flink 拓扑中每个节点(Task)间的数据都以阻塞队列的方式传输,下游来不及消费导致队列被占满后,上游的生产也会被阻塞,…

GaussDB SQL调优:选择合适的分布列

一、背景 GaussDB是华为公司倾力打造的自研企业级分布式关系型数据库,该产品具备企业级复杂事务混合负载能力,同时支持优异的分布式事务,同城跨AZ部署,数据0丢失,支持1000扩展能力,PB级海量存储等企业级数…

Netty NIO 非阻塞模式

1.概要 1.1 说明 使用非阻塞的模式,就可以用一个现场,处理多个客户端的请求了 1.2 要点 ssc.configureBlocking(false);if(sc!null){ sc.configureBlocking(false); channels.add(sc); }if(len>0){ byteBuffer.flip(); 2.代码 2.1 服务端代码 …

Springboot 多级缓存设计与实现

🏷️个人主页:牵着猫散步的鼠鼠 🏷️系列专栏:Java全栈-专栏 🏷️个人学习笔记,若有缺误,欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默&…

StarRocks之扩容缩容

扩缩容 FE 集群 StarRocks FE 节点分为 Follower 节点和 Observer 节点。Follower 节点参与选举投票和写入,Observer 节点只用来同步日志,扩展读性能。 注意: 所有 FE 节点的 http_port 必须相同。 Follower FE 节点(包括 Leader…

超真诚婚礼邀请函小程序

结婚了&#xff0c;自己写个婚礼邀请函小程序&#xff0c;含泪省下&#xffe5;49.9&#xff1b;程序员的浪漫&#xff01; 1、定位直达 2、背景音乐 3、倒计时 4、CSDN图床 页面代码如下&#xff1a; <cu-custom bgColor"bg-yellow-light" isBack"{{fal…

基于HT32的智能家居demo(蓝牙上位机)

参加合泰杯作品的部分展示&#xff0c;基于HT32的智能家居&#xff0c;这里展示灯光的相关控制&#xff0c;是用蓝牙进行的数据透传&#xff0c;参考了一些资料&#xff0c;美化封装了一下之前的上位机界面。 成果展示 点击主界面的蓝牙设置&#xff0c;进行连接&#xff0c;下…

Rust调用同级目录中的rs文件和调用下级目录中的rs文件

一、Rust调用同级目录中的rs文件 Rust新建工程demo02&#xff0c;src文件夹下面新建test.rs文件&#xff0c;这样main.rs文件与它属于同级目录中。 关键点&#xff1a;导入test文件和test文件中的Ellipse模块 mod test;//导入test模块&#xff08;文件&#xff09; use test…

iview碰到的一些问题总结

iview tabs嵌套使用问题 tabs嵌套使用的时候不是直接套用行了&#xff0c;直接套用会出现内层tab都集成到一级tab去&#xff0c;需要设置该属性指向对应 Tabs 的 name 字段(需要版本大于3.3.1) <Tabs name"tab1" ><TabPane label"标签1" tab&qu…

【程序员英语】【美语从头学】初级篇(入门)(笔记)Lesson 16 At the Shoe Store 在鞋店

《美语从头学初级入门篇》 注意&#xff1a;被 删除线 划掉的不一定不正确&#xff0c;只是不是标准答案。 文章目录 Lesson 16 At the Shoe Store 在鞋店对话A对话B笔记会话A会话B替换 Lesson 16 At the Shoe Store 在鞋店 对话A A: Do you have these shoes in size 8? B:…

FL Studio All Plugins Edition2024中文完整版Win/Mac

FL Studio All Plugins Edition&#xff0c;常被誉为数字音频工作站&#xff08;DAW&#xff09;的佼佼者&#xff0c;是音乐制作人和声音工程师钟爱的工具。它集音频录制、编辑、混音以及MIDI制作为一体&#xff0c;为用户提供了从创作到最终作品输出的完整工作流程。这个版本…

第 1 章 微信小程序与云开发从入门到实践从零开始做小程序——开发认识微信小程序

小北的参考工具书 小程序开发的图书并不少&#xff0c;这本书仍然值得你拥有&#xff01; 首先&#xff0c;这是一本全栈小程序开发教程&#xff0c;循序渐进&#xff0c;由浅入深&#xff0c;介绍了小程序开发你想了解的方方面面&#xff0c;包括近其小程序开发的各种新技术应…

如何避免在绩效考核评分时“脸盲”

对于大型企业来说&#xff0c;如何保证在绩效考核评分时准确快速地回忆起员工的日常表现&#xff0c;已经成为困扰管理者的难题。由于大型企业员工数量众多且业务模块繁杂&#xff0c;公司领导很难对每个员工的工作情况都了如指掌。这导致在绩效考核评分时&#xff0c;公司领导…

利用R语言进行典型相关分析实战

&#x1f349;CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一&#xff5c;统计学&#xff5c;干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项&#xff0c;参与研究经费10w、40w级横向 文…

Python爬虫实战:从API获取数据

引言 在现代软件开发中&#xff0c;API已经成为获取数据的主要方式之一。API允许不同的软件应用程序相互通信&#xff0c;共享数据和功能。在本文中&#xff0c;我们将学习如何使用Python从API获取数据&#xff0c;并探讨其在实际应用中的价值。 目录 引言 二、API基础知识 …

辽宁博学优晨教育视频剪辑培训探索学习新意义

在当今数字化快速发展的时代&#xff0c;视频已成为信息传达的重要载体。辽宁博学优晨教育视频剪辑培训应运而生&#xff0c;不仅为学员提供了专业的学习平台&#xff0c;更在探索学习的意义方面赋予了新的内涵。 视频剪辑作为现代媒体行业的重要技能&#xff0c;其学习意义不仅…

【计算机图形学】Where2Act: From Pixels to Actions for Articulated 3D Objects

文章目录 1.论文做了件什么事儿2. 论文为什么要做这件事3. 介绍Introduction4. 相关工作预测语义表达推理几何和物体属性从被动观察中学习Affordance从交互中学习感知 5. 问题陈述6. 方法6.1 网络模块主干特征提取器可运动性评分模块运动建议模块运动评分模块 6.2 训练数据收集…

编曲学习:高叠和弦 挂留和弦 和弦实战应用

高叠和弦 挂留和弦 和弦实战应用小鹅通-专注内容付费的技术服务商https://app8epdhy0u9502.pc.xiaoe-tech.com/live_pc/l_65d4826fe4b04c10a1310517?course_id=course_2XLKtQnQx9GrQHac7OPmHD9tqbv 七和弦 以三和弦举例,三和弦上面叠一个三度的音,就变成了七和弦。 从下到…

消息中间件篇之Kafka-高可用机制

一、 集群模式 1. Kafka的服务器端由被称为Broker的服务进程构成&#xff0c;即一个Kafka集群由多个Broker组成。 2. 这样如果集群中某一台机器宕机&#xff0c;其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一。 二、分区备份机制 1. 一个…

英语四级,求职的必备项?【文章底部添加可得内推码汇总表】

目录 英语四级&#xff1a;求职的砝码 提升职业竞争力 国内外机会双丰收 系统备考英语四级 实际运用英语 强调英语四级证书 在当今全球化的职场中&#xff0c;英语四级证书愈发成为求职的必备项。它不仅仅是一张证书&#xff0c;更是通向更广阔职业世界的关键通行证。本文…