科技云报道:黑马Groq单挑英伟达,AI芯片要变天?

科技云报道原创。

近一周来,大模型领域重磅产品接连推出:OpenAI发布“文字生视频”大模型Sora;Meta发布视频预测大模型 V-JEPA;谷歌发布大模型 Gemini 1.5 Pro,更毫无预兆地发布了开源模型Gemma…

难怪网友们感叹:“一开年AI发展的节奏已经如此炸裂了么!”

但更令人意想不到的是,AI芯片领域处于绝对霸主地位的英伟达,竟然也遇到了挑战,而且挑战者还是一家初创公司。

在这家名叫Groq的初创芯片及模型公司官网上,它号称是世界最快大模型,比GPT-4快18倍,测试中最快达到破纪录的每秒吞吐500 tokens。

这闪电般的速度,来源于Groq自研的LPU(语言处理单元),是一种名为张量流处理器(TSP)的新型处理单元,自然语言处理速度是英伟达GPU 10倍,做到了推理的最低延迟。

“快”字当头,Groq可谓赚足眼球。Groq还喊话各大公司,扬言在三年内超越英伟达。

事实上,在这一波AI热潮中,“天下苦英伟达久矣”。英伟达GPU芯片价格一再被炒高,而Groq的LPU架构能“弯道超车”,显然是众望所归。

因此,不少舆论惊呼Groq要颠覆英伟达,也有业内人士认为Groq想要“平替”英伟达还有很长的路要走。

但无论持哪种观点,Groq的出现不仅是对现有芯片架构和市场格局的挑战,也预示着AI芯片及其支撑的大模型发展方向正在发生变化——聚焦AI推理。
在这里插入图片描述
Groq LPU:快字当头

据介绍,Groq的芯片采用14nm制程,搭载了230MB大静态随机存储器(SRAM)以保证内存带宽,片上内存带宽达80TB/s。在算力方面,该芯片的整型(8位)运算速度为750TOPs,浮点(16位)运算速度为188TFLOPs。

Anyscale的LLMPerf排行显示,在Groq LPU推理引擎上运行的Llama 2 70B,输出tokens吞吐量快了18倍,优于其他所有云推理供应商。

据网友测试,面对300多个单词的“巨型”prompt(AI模型提示词),Groq在不到一秒钟的时间里,就为一篇期刊论文创建了初步大纲和写作计划。此外,Groq还完全实现了远程实时的AI对话。

电子邮件初创企业Otherside AI的首席执行官兼联合创始人马特·舒默(Matt Shumer)在体验Groq后称赞其快如闪电,能够在不到一秒钟的时间内生成数百个单词的事实性、引用性答案。

更令人惊讶的是,其超过3/4的时间用于搜索信息,而生成答案的时间却短到只有几分之一秒。

Groq之所以“快如闪电”,其创新的核心在于LPU。

据官方信息显示,LPU推理引擎是一种新型的端到端处理单元系统,它为计算密集型应用提供最快的推理能力,这些应用具有序列组件,例如AI语言应用程序(LLM)。

LPU旨在克服LLM的两个瓶颈:计算密度和内存带宽。

就LLM而言,LPU比GPU和CPU具有更大的计算能力。这减少了每个单词的计算时间,从而可以更快地生成文本序列。

同时,与利用高带宽内存(HBM)的GPU不同,Groq的LPU利用SRAM进行数据处理,比HBM快约20倍,从而显著降低能耗并提高效率。

GroqChip的独特架构与其时间指令集相结合,可实现自然语言和其他顺序数据的理想顺序处理。

消除外部内存瓶颈,不仅使LPU推理引擎能够在LLM上提供比GPU高几个数量级的性能。

而且由于LPU只进行推理计算,需要的数据量远小于模型训练,从外部内存读取的数据更少,消耗的电量也低于GPU。

此外,LPU芯片设计实现了多个TSP的无缝连接,避免了GPU集群中的瓶颈问题,显著地提高了可扩展性。

因此,Groq公司宣称,其LPU所带来的AI推理计算是革命性的。

在AI推理领域挑战GPU

尽管Groq高调喊话,但想要“平替”英伟达GPU并不容易。从各方观点来看,Groq的芯片还无法与之分庭抗礼。

原Facebook人工智能科学家、原阿里技术副总裁贾扬清算了一笔账,因为Groq小得可怜的内存容量,在运行Llama 2 70B模型时,需要305张Groq卡才足够,而用英伟达的H100则只需要8张卡。

从目前的价格来看,这意味着在同等吞吐量下,Groq的硬件成本是H100的40倍,能耗成本是10倍。

但跳出单纯的价格对比,Groq LPU的解决方案依然展现出了不小的应用潜力。

根据机器学习算法步骤,AI芯片可以划分为训练AI芯片和推理AI芯片。

训练芯片是用于构建神经网络模型,需要高算力和通用性,追求的是高计算性能(高吞吐率)、低功耗。

推理芯片是对训练好的神经网络模型进行运算,利用输入的新数据来一次性获得正确结论。

因此完成推理过程的时间要尽可能短、低功耗,更关注用户体验方面的优化。

虽然现阶段GPU利用并行计算的优势在AI领域大获全胜,但由于英伟达GPU的独有架构,英伟达H100等芯片在推理领域算力要求远不及训练端,这也就给Groq等竞争对手留下了机会。

因此,专注于AI推理的Groq LPU,得以在推理这个特定领域挑战英伟达GPU的地位。从测试结果上看,Groq能够达到令人满意的“秒回”效果。

这也在一定程度上显示了通用芯片与专用芯片的路径分歧。

随着AI和深度学习的不断发展,对专用芯片的需求也在增长。

各种专用加速器如FPGA、ASIC以及其他初创公司的AI芯片已经不断涌现,它们在各自擅长的领域内展现出了挑战GPU的可能性。

相比于英伟达通用型AI芯片,自研AI芯片也被称作ASIC,往往更适合科技公司本身的AI工作负载需求且成本较低。

比如,云巨头AWS就推出了为生成式AI和机器学习训练而设计全新自研AI芯片AWS Trainium2,性能比上一代芯片提高到4倍,可提供65ExaFlops超算性能。

微软也推出第一款定制的自研CPU系列Azure Cobalt和AI加速芯片Azure Maia,后者是微软首款AI芯片,主要针对大语言模型训练,预计将于明年初开始在微软Azure数据中心推出。

谷歌云也推出了新版本的TPU芯片TPU v5p,旨在大幅缩减训练大语言模型时间投入。

无论是大厂自研的AI芯片,还是像Groq LPU这样的专用芯片,都是为了优化特定AI计算任务的性能和成本效率,同时减少对英伟达等外部供应商的依赖。

作为GPU的一个重要补充,专用芯片让面对紧缺昂贵的GPU芯片的企业有了一个新的选择。

AI芯片聚焦推理

随着AI大模型的快速发展,尤其是Sora以及即将推出的GPT-5,都需要更强大高效的算力。但GPU在推理方面的不够高效,已经影响到了大模型业务的发展。

从产业发展趋势来看,AI算力负载大概率将逐步从训练全面向推理端迁移。

华尔街大行摩根士丹利在2024年十大投资策略主题中指出,随着消费类边缘设备在数据处理、存储端和电池续航方面的大幅改进,2024年将有更多催化剂促使边缘AI这一细分领域迎头赶上,AI行业的发展重点也将从“训练”全面转向“推理”。

高通CEO Amon也指出,芯片制造商们的主要战场不久后将由“训练”转向“推理”。

Amon在采访时表示:“随着AI大模型变得更精简、能够在设备上运行并专注于推理任务,芯片制造商的主要市场将转向‘推理’,即模型应用。预计数据中心也将对专门用于已训练模型推理任务的处理器产生兴趣,一切都将助力推理市场规模超越训练市场。”

在最新的财报电话会上,英伟达CFO Colette Kress表示,大模型的推理场景已经占据英伟达数据中心40%的营收比例。这也是判断大模型行业落地前景的重要信号。

事实上,巨头们的一举一动也在印证这一趋势的到来。

据路透社报道,Meta将推新款自研AI推理芯片Artemis。预计Meta可于年内完成该芯片在自有数据中心的部署,与英伟达GPU协同提供算力。

而英伟达也通过强化推理能力,巩固自身通用GPU市占率。

在下一代芯片H200中,英伟达在H100的基础上将存储器HBM进行了一次升级,为的也是提升芯片在推理环节中的效率。

不仅如此,随着各大科技巨头、芯片设计独角兽企业都在研发更具效率、部分替代GPU的芯片,英伟达也意识到这一点,建立起了定制芯片的业务部门。

总的来说,以现在AI芯片供不应求的现状,GPU的增长暂时还不会放缓。但随着AI发展趋势的快速变化,英伟达不可能是永远的王者,而Groq也绝对不是唯一的挑战者。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/705212.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Excel PDF 系列】POI + iText 库实现 Excel 转换 PDF

你知道的越多,你不知道的越多 点赞再看,养成习惯 如果您有疑问或者见解,欢迎指教: 企鹅:869192208 文章目录 前言转换前后效果引入 pom 配置代码实现 前言 最近遇到生成 Excel 并转 pdf 的需求,磕磕碰碰总…

stm32——hal库学习笔记(DMA实验)

一、DMA介绍(了解) 二、DMA结构框图介绍(熟悉) 三、DMA相关寄存器介绍(熟悉) 四、DMA相关HAL库驱动介绍(掌握) 五、DMA配置步骤(掌握) 六、编程实战&#xff…

Anaconda和TensorFlow环境搭建!!

Anaconda下载 进入官网下载 https://www.anaconda.com/download 也可以通过清华的映像站下载: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 我这里下载的是3.4.20版本。下载好就可以安装默认安装就行。 打开Anaconda Prompt修改成国内镜像 conda c…

大概了解一下G1收集器

在上一篇文章中(链接:大概了解一下CMS收集器)我们提到,CMS是一种主要针对旧生代对象进行回收的收集器。与CMS不同,G1号称“全功能的垃圾收集器”,对初生代内存和旧生代内存均进行管理。鉴于此,这…

pyspark分布式部署随机森林算法

前言 分布式算法的文章我早就想写了,但是一直比较忙,没有写,最近一个项目又用到了,就记录一下运用Spark部署机器学习分类算法-随机森林的记录过程,写了一个demo。 基于pyspark的随机森林算法预测客户 本次实验采用的…

成功解决ModuleNotFoundError: No module named ‘cv2’

🔥 成功解决ModuleNotFoundError: No module named ‘cv2’ 🔥 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 …

中间件-Nginx漏洞整改(限制IP访问隐藏nginx版本信息)

中间件-Nginx漏洞整改(限制IP访问&隐藏nginx版本信息) 一、限制IP访问1.1 配置Nginx的ACL1.2 重载Nginx配置1.3 验证结果 二、隐藏nginx版本信息2.1 打开Nginx配置文件2.2 隐藏Nginx版本信息2.3 保存并重新加载Nginx配置2.4 验证结果2.5 验证隐藏版本…

ubuntu20.04安装和使用 Maldet (Linux Malware Detect)

1、下载 Maldet sudo wget http://www.rfxn.com/downloads/maldetect-current.tar.gz 2、解压Maldet sudo tar -xvf maldetect-current.tar.gz 3、进入到Maldet目录,然后运行安装脚本 sudo ./install.sh 4、安装ClamAV sudo apt-get update sudo apt-get in…

Jenkins 中针对视图分组(11)

一、将没有在视图的项目进行归纳操作; 新增的项目规则,并入到某就一个视图中,但常规是设置一个规则,后续按照规则走,就不用单独设置 1、首先到控制台页面,如果没有视图分组就点击加号新增;已存在…

JavaScript异步编程

回调地狱 回调地狱是一种由于过度使用嵌套回调函数而导致的代码结构不清晰、难以理解和维护的问题。一个典型例子是嵌套多个回调函数,每个回调函数都作为另一个回调函数的参数。这样会导致各个部分之间高度耦合、程序结构混乱、流程难以追踪,每个任务只能…

详解顺序结构滑动窗口处理算法

🎀个人主页: https://zhangxiaoshu.blog.csdn.net 📢欢迎大家:关注🔍点赞👍评论📝收藏⭐️,如有错误敬请指正! 💕未来很长,值得我们全力奔赴更美好的生活&…

性能优化问题思考总结

INP 是什么? Interaction to Next Paint (INP) INP是一项指标,通过观察用户在访问网页期间发生的所有点击、点按和键盘互动的延迟时间,评估网页对用户互动的总体响应情况。 互动是指在同一逻辑用户手势期间触发的一组事件处理脚本。例如&a…

龙蜥OS 尝试

> 尝试一下龙蜥OS,和Centos8应该没什么区别。 阿里云版本龙蜥 https://alinux3.oss-cn-hangzhou.aliyuncs.com/aliyun_3_x64_20G_nocloud_alibase_20230727.vhd Index of /anolis/8.8/isos/GA/x86_64/ (openanolis.cn) 网卡 我在虚拟机上安装完后,…

SpringBoot使用classfinal-maven-plugin插件加密Jar包

jar包加密 1、在启动类的pom.xml中加入classfinal-maven-plugin插件 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin><plugin><…

算法沉淀——动态规划之子数组、子串系列(上)(leetcode真题剖析)

算法沉淀——动态规划之子数组、子串系列 01.最大子数组和02.环形子数组的最大和03.乘积最大子数组04.乘积为正数的最长子数组长度 01.最大子数组和 题目链接&#xff1a;https://leetcode.cn/problems/maximum-subarray/、 给你一个整数数组 nums &#xff0c;请你找出一个具…

计算机设计大赛 深度学习实现行人重识别 - python opencv yolo Reid

文章目录 0 前言1 课题背景2 效果展示3 行人检测4 行人重识别5 其他工具6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习的行人重识别算法研究与实现 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c…

vue3使用elementPlus进行table合并处理

elementPlus中table合并部分列 虚拟数据中公司下有多个客户&#xff0c;公司一样的客户&#xff0c;公司列需要合并&#xff0c;客户如果一样也需要合并进行展示&#xff0c;效果展示 const tableData ref([])自定定义自已想要的数据&#xff0c;一般都是通过接口拿到 //table…

ubuntu+QT+ OpenGL环境搭建和绘图

一&#xff0c;安装OpenGL库 安装OpenGL依赖项&#xff1a;运行sudo apt install libgl1-mesa-glx命令安装OpenGL所需的一些依赖项。 安装OpenGL头文件&#xff1a;运行sudo apt install libgl1-mesa-dev命令来安装OpenGL的头文件。 安装GLUT库&#xff1a;GLUT&#xff08;Ope…

亚马逊巨头都在用的自养号大法,赶快get!

随着时间的推移&#xff0c;越来越多做亚马逊生意的朋友开始意识到自养号的重要性。拥有自养号意味着掌握了一手资源&#xff0c;这种自主性让人感到更安全。高权重的买家号可以享有更多的操作权限&#xff0c;也能获得更好的效果。然而&#xff0c;要想成功地养好自养号并不是…

Netty权威指南——基础篇2(NIO编程)

1 概述 与Socket类和ServerSocket&#xff0c;NIO也提供了SocketChannel和ServerSocketChannel两种不同的套接字通道实现。这两种新增的通道都支持阻塞和非阻塞两种模式。阻塞模式使用简单&#xff0c;但性能和可靠性都不好&#xff0c;非阻塞模式则正好相反。一般来说&#xf…