【postgresql】数据表id自增与python sqlachemy结合实例

需求:
postgresql实现一个建表语句,表名:student,字段id,name,age,
要求:每次添加一个数据id会自动增加1

在PostgreSQL中,您可以使用SERIAL或BIGSERIAL数据类型来自动生成主键ID。以下是一个创建名为student的表的SQL语句,该表包含id、name和age字段,其中id字段会自动递增:
sql

CREATE TABLE student (id SERIAL PRIMARY KEY,name VARCHAR(255) NOT NULL,age INT NOT NULL
);

在这个建表语句中:

  • id字段被设置为SERIAL类型,这意味着每当您向表中插入新行时,id字段的值会自动增加1。
    PRIMARY KEY约束表示id字段是表的主键,它在表中是唯一的,并且不能为NULL。
  • name字段被设置为VARCHAR(255)类型,这是一个可变长度的字符串,最大长度为255个字符。
  • age字段被设置为INT类型,用于存储整数值。

请注意,SERIAL类型是一个整数类型,它会在插入新行时自动增加,但它的值有上限。如果您需要一个更大的数字范围,可以使用BIGSERIAL类型,它与SERIAL类型类似,但可以存储更大的数字。
要向student表中插入数据,您可以使用以下INSERT语句:

INSERT INTO student (name, age) VALUES ('John Doe', 20);
INSERT INTO student (name, age) VALUES ('Tom', 20);

在这个INSERT语句中,您不需要指定id字段,因为它会自动生成。
在这里插入图片描述

ORM操作

# -- coding:utf-8 --
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmakerBase = declarative_base()class User(Base):__tablename__ = 'student'id = Column(Integer, primary_key=True, autoincrement=True)name = Column(String(50), nullable=False)age = Column(Integer, nullable=False)# 创建引擎和会话
engine = create_engine('postgresql://admin:admin@192.168.1.1/post')
Session = sessionmaker(bind=engine)
session = Session()# 创建一个新用户
new_user = User(name='johndoe', age=18)
session.add(new_user)
session.commit()

数据插入成功:
在这里插入图片描述

SERIAL数据类型

如果您的表已经创建,但使用的是INT类型作为主键,并且您想要修改它成为一个自动递增的SERIAL类型,您可以使用ALTER TABLE语句来修改列的数据类型并将其设置为主键。以下是一个例子,展示了如何将现有表users中的id列修改为SERIAL类型:

ALTER TABLE users
MODIFY id SERIAL PRIMARY KEY;

这个命令会改变users表中id列的数据类型为SERIAL,并且将其设置为表的主键。如果id列已经包含数据,这个操作会自动为现有的每个id值分配一个唯一的序列值。
如果您想要保留id列的现有数据并仅为新插入的行生成序列值,您可以使用ALTER TABLE ... ALTER COLUMN ... RESTART命令:

ALTER TABLE users
ALTER COLUMN id RESTART WITH 1;

这个命令会将id序列重新启动,设置下一个插入的行的id值为1。这将不会影响表中已经存在的行。
请注意,这些命令应该在数据库服务器上直接执行,而不是通过应用程序。如果您正在使用SQLAlchemy或其他ORM框架,您可能需要先迁移现有的数据,然后再修改表结构。

案例:
如果之前建表语句中id 用的int类型,怎么修改成SERIAL类型:
如果您的表已经创建,但使用的是INT类型作为主键,并且您想要修改它成为一个自动递增的SERIAL类型,您可以使用ALTER TABLE语句来修改列的数据类型并将其设置为主键。以下是一个例子,展示了如何将现有表users中的id列修改为SERIAL类型:

ALTER TABLE users
MODIFY id SERIAL PRIMARY KEY;

这个命令会改变users表中id列的数据类型为SERIAL,并且将其设置为表的主键。如果id列已经包含数据,这个操作会自动为现有的每个id值分配一个唯一的序列值。
如果您想要保留id列的现有数据并仅为新插入的行生成序列值,您可以使用ALTER TABLE ... ALTER COLUMN ... RESTART命令:

ALTER TABLE users
ALTER COLUMN id RESTART WITH 1;

这个命令会将id序列重新启动,设置下一个插入的行的id值为1。这将不会影响表中已经存在的行。
请注意,这些命令应该在数据库服务器上直接执行,而不是通过应用程序。如果您正在使用SQLAlchemy或其他ORM框架,您可能需要先迁移现有的数据,然后再修改表结构。

SERIAL 与BIGSERIAL的区别

SERIALBIGSERIAL是PostgreSQL中用于自动递增整数键的数据类型,它们之间的主要区别在于可以存储的数值范围:

  1. SERIAL:它是INTEGER类型的一个别名,用于自动递增的整数。SERIAL类型的取值范围与INTEGER类型相同,理论上限是2^31 - 1(2147483647),但实际上由于系统限制,可能会有所不同。
  2. BIGSERIAL:它是BIGINT类型的一个别名,用于自动递增的更大范围的整数。BIGSERIAL类型的取值范围与BIGINT类型相同,理论上限是2^63 - 1(9223372036854775807)。
    在选择SERIALBIGSERIAL时,您应该根据您的应用程序所需的ID范围来决定。如果您预计ID值会非常大,或者有可能达到INTEGER类型的上限,那么应该使用BIGSERIAL。如果您确信ID值会在INTEGER类型的范围内,那么SERIAL将是更高效的选择,因为它在存储和处理上消耗的资源更少。
    例如,如果您正在构建一个可能会有数百万或更多用户的大规模应用程序,并且用户ID需要有很大的范围,那么使用BIGSERIAL会是更合适的选择。如果您构建的是一个小型应用程序,用户数量有限,那么SERIAL可能就足够了。
    在创建表时,您可以这样定义这两个类型:
CREATE TABLE users (id SERIAL PRIMARY KEY,-- ...
);
CREATE TABLE large_users (id BIGSERIAL PRIMARY KEY,-- ...
);

在SQLAlchemy中,您可以这样指定这些类型:

from sqlalchemy import Column, Integer, BigInteger
class SmallUser(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True)# ...
class LargeUser(Base):__tablename__ = 'large_users'id = Column(BigInteger, primary_key=True)# ...

在这个例子中,SmallUser类使用Integer类型,而LargeUser类使用BigInteger类型,后者可以存储更大的数值。在SQLAlchemy中,BigInteger类型对应于PostgreSQL中的BIGINT类型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/703539.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB之客户端工具与核心概念及基本类型篇

MongoDB之客户端工具与核心概念及基本类型篇 文章目录 MongoDB之客户端工具与核心概念及基本类型篇1. MongoDB是什么?1. 关于MongoDB2. 相关客户端工具1. MongoDB Compass2. Studio 3T3. Navicat for MongoDB4. NoSQL Manager for MongoDB Professional 2.MongoDB相关概念2.1 …

4.测试教程 - 用例篇

文章目录 1.测试用例的基本要素2.测试用例的给我们带来的好处3.测试用例的设计方法3.1基于需求进行测试用例的设计3.1.1功能需求测试分析3.1.2非功能需求测试分析 3.2具体的设计方法3.2.1等价类3.2.2边界值3.2.3错误猜测法3.2.4判定表3.2.5场景设计法3.2.6因果图3.2.7因果图的需…

Python 鼠标模拟

鼠标模拟即:通过python 进行模拟鼠标操作 引入类库 示例如下: import win32api import win32con import time 设置鼠标位置 设置鼠标位置为窗口中的回收站。 示例如下: # 设置鼠标的位置 win32api.SetCursorPos([30, 40]) 双击图标 设置…

springboot+vue前后端分离适配cas认证的跨域问题

0. cas服务搭建参考:CAS 5.3服务器搭建_cas-overlay-CSDN博客 1. 参照springsecurity适配cas的方式, 一直失败, 无奈关闭springssecurity认证 2. 后端服务适配cas: 参考前后端分离项目(springbootvue)接入单点登录cas_前后端分离做cas单点登录-CSDN博客 1) 引入maven依赖 …

如何系统地自学 Python

设定学习目标 确定自己学习 Python 的目的和用途,这一步很重要,比如是为了编写脚本、开发网站、进行数据分析等。设定清晰的学习目标,把目标拆分为一个个阶段的小目标,通过完成一个个小目标,得到正反馈,激…

SD-WAN解决企业组网中网络卡顿问题

网络卡顿已成为企业组网中一大难题,特别是随着办公应用系统的内网服务器或云端部署,员工对网络的依赖日益增加。面对网络卡顿问题,我们不得不深入思考如何提升工作效率并改善员工体验。本文将深入探讨企业组网中的网络问题,并介绍…

DeepMind基础世界模型Genie:一张草图即为一个世界,通用AI智能体要来了?

一张草图即为一个世界!Google DeepMind 推出了首个以无监督方式从未经标注的互联网视频中训练而来的生成交互环境模型——Genie。该模型可以通过文本、合成图像、照片甚至草图来生成无数种可玩(动作可控)的虚拟世界。 据介绍,Geni…

使用管道和system V进行进程间通信

进程通信的目的 数据传输:一个进程需要将它的数据发送给另一个进程资源共享:多个进程之间共享同样的资源。通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程…

投资生涯的核心密码:构建交易逻辑体系

首先,我们需要明确一点,交易中究竟有没有确定性? 确定性是指在某一种形式、或有若干条件时,价格必然会上涨或下跌,也可以决定上涨或下跌的程度。 我认为,没有。迄今为止还没有一个理论能发现即使确定的东西…

python图像处理初步

文章目录 处理流程灰度分布图 处理流程 在Python中,通过【plt】和【numpy】可以实现图像处理的最简单的流程,即读取图片->处理图片->显示结果->保存结果。 import matplotlib.pyplot as plt import numpy as nppath lena.jpg img plt.imrea…

春节医美热,爱美客、昊海生科谁更赚钱?

在颜值经济赛道上,医美项目逐渐成为消费主流。随着春节假期的到来,医美消费又将迎来高峰期。 “医美三剑客”中,爱美客(300896.SZ)、昊海生科(688366.SH)近日相继公布了2023年的业绩报告:2023年,爱美客预计实现净利润…

白敬亭风波后现身,心情低落进新剧组,父母暖心陪伴。

♥ 为方便您进行讨论和分享,同时也为能带给您不一样的参与感。请您在阅读本文之前,点击一下“关注”,非常感谢您的支持! 文 |猴哥聊娱乐 编 辑|徐 婷 校 对|侯欢庭 白敬亭春晚首秀引热议,口碑因“春山学”风波陷两极…

掌握Docker:让你的应用轻松部署和管理

文章目录 一、引言(为什么要学习docker?)1.1 环境不一致1.2 隔离性1.3 弹性伸缩1.4 学习成本 二、Docker介绍2.1 Docker的由来2.2 什么是Docker2.3 为什么要用Docker2.3.1 虚拟机2.3.2 Linux容器 2.4 Docker与传统虚拟机的区别2.5 Docker的思…

微信小程序(四十五)登入界面-简易版

注释很详细,直接上代码 上一篇 此文使用了vant组件库,没有安装配置的可以参考此篇vant组件的安装与配置 新增内容: 1.基础组件的组合 2.验证码倒计时的逻辑处理 源码: app.json {"usingComponents": {"van-field…

打印水仙花数---c语言刷题

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 题述 求出0~100000之间的所有“水仙花数”并输出。 “水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身,如:153&#…

C++数据库连接池

功能实现设计 : ConnectionPool.cpp 和 ConnectionPool.h :连接池代码实现 Connection.cpp 和 Connection.h :数据库操作代码、增删改查代码实现 连接池主要包含了以下功能点 : 1.连接池只需要一个实例,所以 Connec…

前端工程化面试题 | 17.精选前端工程化高频面试题

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

高并发系统实战课个人总结(极客时间)

高并发系统实战课 场景 读多写少 我会以占比最高的“读多写少”系统带你入门,梳理和改造用户中心项目。这类系统的优化工作会聚焦于如何通过缓存分担数据库查询压力,所以我们的学习重点就是做好缓存,包括但不限于数据梳理、做数据缓存、加缓…

有哪些非常经典的开源项目?

本文从ABCD角度图解这方面内容。 业界把人工智能(Artificial Intelligence)、区块链(Blockchain)、云计算(Cloud Computing)和数据科学(Data Science)统称的“ABCD”推崇为颇具潜力…

[力扣 Hot100]Day35 LRU 缓存

题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否…