曲线生成 | 图解B样条曲线生成原理(附ROS C++/Python/Matlab仿真)

目录

  • 0 专栏介绍
  • 1 控制点计算之插值
  • 2 控制点计算之近似
  • 3 仿真实现
    • 3.1 ROS C++实现
    • 3.2 Python实现
    • 3.3 Matlab实现

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


在曲线生成 | 图解B样条曲线生成原理(基本概念与节点生成算法)中,我们介绍了B样条曲线的基本概念,例如基函数的递推、曲线支撑性原理、节点生成公式等。本文进一步计算控制点计算和曲线生成原理。

1 控制点计算之插值

设B样条曲线为

P ( t ) = ∑ i = 0 n − 1 p i N i , k ( t ) \boldsymbol{P}\left( t \right) =\sum_{i=0}^{n-1}{\boldsymbol{p}_iN_{i,k}\left( t \right)} P(t)=i=0n1piNi,k(t)

其中 p i \boldsymbol{p}_i pi是待求的控制节点。令参数向量满足其映射为数据点

D j = P ( u j ) = ∑ i = 0 n − 1 p i N i , k ( u j ) , j = 0 , 1 , ⋯ , n − 1 \boldsymbol{D}_j=\boldsymbol{P}\left( u_j \right) =\sum_{i=0}^{n-1}{\boldsymbol{p}_iN_{i,k}\left( u_j \right)}, j=0,1,\cdots ,n-1 Dj=P(uj)=i=0n1piNi,k(uj),j=0,1,,n1

这里 N N N个数据点可求解出 N N N个控制点,所以 n = N n=N n=N,可以矩阵化为

D = N P \boldsymbol{D}=\boldsymbol{NP} D=NP

其中

D = [ d 0 T d 1 T ⋮ d n − 1 T ] , P = [ p 0 T p 1 T ⋮ p n − 1 T ] , N = [ N 0 , k ( u 0 ) N 1 , k ( u 0 ) ⋯ N n − 1 , k ( u 0 ) N 0 , k ( u 1 ) N 1 , k ( u 1 ) ⋯ N n − 1 , k ( u 1 ) ⋮ ⋮ ⋱ ⋮ N 0 , k ( u n − 1 ) N 1 , k ( u n − 1 ) ⋯ N n − 1 , k ( u n − 1 ) ] \boldsymbol{D}=\left[ \begin{array}{c} \boldsymbol{d}_{0}^{T}\\ \boldsymbol{d}_{1}^{T}\\ \vdots\\ \boldsymbol{d}_{n-1}^{T}\\\end{array} \right] , \boldsymbol{P}=\left[ \begin{array}{c} \boldsymbol{p}_{0}^{T}\\ \boldsymbol{p}_{1}^{T}\\ \vdots\\ \boldsymbol{p}_{n-1}^{T}\\\end{array} \right] , \boldsymbol{N}=\left[ \begin{matrix} N_{0,k}\left( u_0 \right)& N_{1,k}\left( u_0 \right)& \cdots& N_{n-1,k}\left( u_0 \right)\\ N_{0,k}\left( u_1 \right)& N_{1,k}\left( u_1 \right)& \cdots& N_{n-1,k}\left( u_1 \right)\\ \vdots& \vdots& \ddots& \vdots\\ N_{0,k}\left( u_{n-1} \right)& N_{1,k}\left( u_{n-1} \right)& \cdots& N_{n-1,k}\left( u_{n-1} \right)\\\end{matrix} \right] D= d0Td1Tdn1T ,P= p0Tp1Tpn1T ,N= N0,k(u0)N0,k(u1)N0,k(un1)N1,k(u0)N1,k(u1)N1,k(un1)Nn1,k(u0)Nn1,k(u1)Nn1,k(un1)

求解该方程即可得到控制点。

2 控制点计算之近似

在插值问题中,插值曲线可能会在数据点间波动,而非紧密遵循数据多边形。为克服这个问题,可以放宽曲线必须穿过所有数据点的硬约束。除了第一个和最后一个数据点,曲线不必包含任何其他点,通过约束最小二乘误差来实现最优近似。考虑到节点向量中首末节点重复度为 k + 1 k+1 k+1时,B样条曲线穿过首末控制点,所以令 p 0 = d 0 \boldsymbol{p}_{0}=\boldsymbol{d}_{0} p0=d0 p n − 1 = d n − 1 \boldsymbol{p}_{n-1}=\boldsymbol{d}_{n-1} pn1=dn1,则

P ( t ) = N 0 , k ( t ) p 0 + ∑ i = 1 n − 2 p i N i , k ( t ) + N n − 1 , k ( t ) p n − 1 \boldsymbol{P}\left( t \right) =N_{0,k}\left( t \right) \boldsymbol{p}_0+\sum_{i=1}^{n-2}{\boldsymbol{p}_iN_{i,k}\left( t \right)}+N_{n-1,k}\left( t \right) \boldsymbol{p}_{n-1} P(t)=N0,k(t)p0+i=1n2piNi,k(t)+Nn1,k(t)pn1

从而可以计算最小二乘误差

f ( p 1 , p 2 , ⋯ , p n − 2 ) = ∑ i = 1 n − 2 [ d i − P ( u i ) ] 2 = ∑ i = 1 n − 2 [ ( d i − N 0 , k ( u i ) p 0 − N n − 1 , k ( u i ) p n − 1 ) ⏟ q i − ∑ j = 1 n − 2 p j N j , k ( u i ) ] 2 = ∑ i = 1 n − 2 [ q i T q i − 2 q i ∑ j = 1 n − 2 p j N j , k ( u i ) + ∑ j = 1 n − 2 p j N j , k ( u i ) ∑ j = 1 n − 2 p j N j , k ( u i ) ] \begin{aligned}f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right) &=\sum_{i=1}^{n-2}{\left[ \boldsymbol{d}_i-\boldsymbol{P}\left( u_i \right) \right] ^2}\\&=\sum_{i=1}^{n-2}{\left[ \underset{{ \boldsymbol{q}_i}}{\underbrace{\left( \boldsymbol{d}_i-N_{0,k}\left( u_i \right) \boldsymbol{p}_0-N_{n-1,k}\left( u_i \right) \boldsymbol{p}_{n-1} \right) }}-\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right] ^2}\\&=\sum_{i=1}^{n-2}{\left[ \boldsymbol{q}_{i}^{T}\boldsymbol{q}_i-2\boldsymbol{q}_i\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)}+\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)}\sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right]}\end{aligned} f(p1,p2,,pn2)=i=1n2[diP(ui)]2=i=1n2 qi (diN0,k(ui)p0Nn1,k(ui)pn1)j=1n2pjNj,k(ui) 2=i=1n2[qiTqi2qij=1n2pjNj,k(ui)+j=1n2pjNj,k(ui)j=1n2pjNj,k(ui)]

将误差函数对 p g ( g = 1 , 2 , ⋯ , n − 2 ) \boldsymbol{p}_g\left( g=1,2,\cdots ,n-2 \right) pg(g=1,2,,n2)求偏导,可得

∂ f ( p 1 , p 2 , ⋯ , p n − 2 ) ∂ p g = ∑ i = 1 n − 2 [ − 2 q i N g , k ( u i ) + 2 N g , k ( u i ) ∑ j = 1 n − 2 p j N j , k ( u i ) ] \frac{\partial f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right)}{\partial \boldsymbol{p}_g}=\sum_{i=1}^{n-2}{\left[ -2\boldsymbol{q}_iN_{g,k}\left( u_i \right) +2N_{g,k}\left( u_i \right) \sum_{j=1}^{n-2}{\boldsymbol{p}_jN_{j,k}\left( u_i \right)} \right]} pgf(p1,p2,,pn2)=i=1n2[2qiNg,k(ui)+2Ng,k(ui)j=1n2pjNj,k(ui)]

∂ f ( p 1 , p 2 , ⋯ , p n − 2 ) / ∂ p g = 0 {{\partial f\left( \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots ,\boldsymbol{p}_{n-2} \right)}/{\partial \boldsymbol{p}_g}}=0 f(p1,p2,,pn2)/pg=0可得

∑ i = 1 n − 2 [ ∑ j = 1 n − 2 N g , k ( u i ) N j , k ( u i ) ] p j = ∑ i = 1 n − 2 q i N g , k ( u i ) \sum_{i=1}^{n-2}{\left[ \sum_{j=1}^{n-2}{N_{g,k}\left( u_i \right) N_{j,k}\left( u_i \right)} \right] \boldsymbol{p}_j}=\sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{g,k}\left( u_i \right)} i=1n2[j=1n2Ng,k(ui)Nj,k(ui)]pj=i=1n2qiNg,k(ui)

改写为矩阵形式

( N T N ) P = Q \left( \boldsymbol{N}^T\boldsymbol{N} \right) \boldsymbol{P}=\boldsymbol{Q} (NTN)P=Q

其中

P = [ p 1 T p 2 T ⋮ p n − 2 T ] , Q = [ ∑ i = 1 n − 2 q i N 1 , k ( u i ) ∑ i = 1 n − 2 q i N 2 , k ( u i ) ⋮ ∑ i = 1 n − 2 q i N n − 2 , k ( u i ) ] , N = [ N 1 , k ( u 1 ) N 2 , k ( u 1 ) ⋯ N n − 2 , k ( u 1 ) N 1 , k ( u 2 ) N 2 , k ( u 2 ) ⋯ N n − 2 , k ( u 2 ) ⋮ ⋮ ⋱ ⋮ N 1 , k ( u n − 2 ) N 2 , k ( u n − 2 ) ⋯ N n − 2 , k ( u n − 2 ) ] \boldsymbol{P}=\left[ \begin{array}{c} \boldsymbol{p}_{1}^{T}\\ \boldsymbol{p}_{2}^{T}\\ \vdots\\ \boldsymbol{p}_{n-2}^{T}\\\end{array} \right] , \boldsymbol{Q}=\left[ \begin{array}{c} \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{1,k}\left( u_i \right)}\\ \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{2,k}\left( u_i \right)}\\ \vdots\\ \sum_{i=1}^{n-2}{\boldsymbol{q}_iN_{n-2,k}\left( u_i \right)}\\\end{array} \right] , \boldsymbol{N}=\left[ \begin{matrix} N_{1,k}\left( u_1 \right)& N_{2,k}\left( u_1 \right)& \cdots& N_{n-2,k}\left( u_1 \right)\\ N_{1,k}\left( u_2 \right)& N_{2,k}\left( u_2 \right)& \cdots& N_{n-2,k}\left( u_2 \right)\\ \vdots& \vdots& \ddots& \vdots\\ N_{1,k}\left( u_{n-2} \right)& N_{2,k}\left( u_{n-2} \right)& \cdots& N_{n-2,k}\left( u_{n-2} \right)\\\end{matrix} \right] P= p1Tp2Tpn2T ,Q= i=1n2qiN1,k(ui)i=1n2qiN2,k(ui)i=1n2qiNn2,k(ui) ,N= N1,k(u1)N1,k(u2)N1,k(un2)N2,k(u1)N2,k(u2)N2,k(un2)Nn2,k(u1)Nn2,k(u2)Nn2,k(un2)

求解该方程即可得到控制点。

3 仿真实现

3.1 ROS C++实现

核心代码如下所示:

Points2d BSpline::interpolation(const Points2d points, const std::vector<double> param, const std::vector<double> knot)
{size_t n = points.size();Eigen::MatrixXd N = Eigen::MatrixXd::Zero(n, n);Eigen::MatrixXd D(n, 2);for (size_t i = 0; i < n; i++)for (size_t j = 0; j < n; j++)N(i, j) = baseFunction(j, order_, param[i], knot);N(n - 1, n - 1) = 1;for (size_t i = 0; i < n; i++){D(i, 0) = points[i].first;D(i, 1) = points[i].second;}Eigen::MatrixXd C = N.inverse() * D;std::vector<std::pair<double, double>> control_points(n);for (size_t i = 0; i < n; i++)control_points[i] = { C(i, 0), C(i, 1) };return control_points;
}

3.2 Python实现

核心代码如下所示:

def approximation(self, points: list, param: list, knot: list):n = len(points)D = np.array(points)# heuristically setting the number of control pointsh = n - 1N = np.zeros((n, h))for i in range(n):for j in range(h):N[i][j] = self.baseFunction(j, self.k, param[i], knot)N_ = N[1 : n - 1, 1 : h - 1]qk = np.zeros((n - 2, 2))for i in range(1, n - 1):qk[i - 1] = D[i, :] - N[i][0] * D[0, :] - N[i][h - 1] * D[-1, :]Q = N_.T @ qkP = np.linalg.inv(N_.T @ N_) @ QP = np.insert(P, 0, D[0, :], axis=0)P = np.insert(P, len(P), D[-1, :], axis=0)return P

在这里插入图片描述

3.3 Matlab实现

核心代码如下所示:

function points = generation(knot, control_pts, param)n = ceil(1.0 / param.step);t = (0 : n - 1) / (n - 1);[m, ~] = size(control_pts);N = zeros(n, m);for i=1:nfor j=1:mN(i, j) = baseFunction(j, param.order, t(i), knot);endendN(n, m) = 1.0;points = N * control_pts;
end

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/703039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ZYNQ Vivado更新硬件后SDK不更新问题解决办法

一、情况说明 软件版本 Vivado 2018.3 Vivado更新硬件导出后&#xff0c;按正常SDK会自动检测到hdf文件的变化跳出更新提示&#xff08;如下图所示&#xff09;。但是我的项目如果是复制的或者是长时间没打开的项目更新硬件配置导出后SDK无法自动更新。 二、解决办法 2.1 …

win10安装使用AxurePR9

背景&#xff1a;win10 安装、汉化 Axure Pr9 下载 安装包 链接&#xff1a;https://pan.baidu.com/s/1taMgh2zLbaFK7VTfUXTHdQ 提取码&#xff1a;kygo 安装 修改安装目录 打开是英文的 汉化 复制lang包到Axure安装包 再打开就是中文 问题 发布html后火狐无法打开 一、…

数据安全策略

当您在第一线担负着确保公司的信息和系统尽可能免受风险的关键职责时&#xff0c;您的数据安全策略需要复杂且多层次。威胁可能有多种形式&#xff1a;恶意软件、黑客攻击、财务或信息盗窃、破坏、间谍活动&#xff0c;甚至是您信任的员工故意或无意的活动造成的。因此&#xf…

电商风控系统(flink+groovy+flume+kafka+redis+clickhouse+mysql)

一.项目概览 电商的防止薅羊毛的风控系统 需要使用 groovy 进行风控规则引擎的编写 然后其它技术进行各种数据的 存储及处理 薅羊毛大致流程 如果单纯使用 if else在业务代码中进行风控规则的编写 那么 维护起来会比较麻烦 并且跟业务系统强绑定不合适 所以一般独立成一个单…

高效备考2025年AMC8数学竞赛:做熟2000-2024年AMC8真题

这段时间&#xff0c;有小学生的家长朋友问&#xff0c;想给孩子学点数学拓展的知识&#xff0c;不局限于课堂所学。有什么可以推荐的活动或比赛。我个人的建议是可以了解下AMC8美国数学竞赛。主要有以下几个原因&#xff1a; 一是这个竞赛是美国数学协会&#xff08;MAA&…

Linux7.9环境源码编译安装ffmpeg6.x

1.官网ffmpeg下载源码 https://ffmpeg.org/download.html#build-windows 2.未安装x264库则先安装配置 可以先查询x264库: whereis libx264 安装编译工具和依赖库&#xff1a; sudo yum install gcc make cmake mercurial git yasm pkgconfig autoconf automake libtool sudo…

GEE数据集——全球无缝高分辨率温度数据集(GSHTD)

全球无缝高分辨率温度数据集&#xff08;GSHTD&#xff09; 本研究中介绍的全球无缝高分辨率温度数据集&#xff08;GSHTD&#xff09;为各领域的研究人员提供了全面而宝贵的资源。该数据集涵盖 2001 年至 2020 年&#xff0c;主要关注陆地表面温度 (Ts) 和近地面气温 (Ta)。GS…

(每日持续更新)jdk api之ObjectStreamField基础、应用、实战

博主18年的互联网软件开发经验&#xff0c;从一名程序员小白逐步成为了一名架构师&#xff0c;我想通过平台将经验分享给大家&#xff0c;因此博主每天会在各个大牛网站点赞量超高的博客等寻找该技术栈的资料结合自己的经验&#xff0c;晚上进行用心精简、整理、总结、定稿&…

电子印章系统怎么盖骑缝章?

随着数字化时代的不断发展&#xff0c;电子印章系统在各行各业中得到了广泛应用。其中&#xff0c;骑缝章作为一种常见的复杂印章形式&#xff0c;也在电子印章系统&#xff0c;也额外被读者所关注。电子骑缝章的盖章过程相较于传统的纸质印章&#xff0c;更加简便快捷&#xf…

C++单元测试工具——googletest

在平常的学习和工作中&#xff0c;单元测试是很重要的一环&#xff0c;用于验证代码中最小的可测试单元&#xff08;通常是函数或方法&#xff09;是否按照预期工作&#xff0c;单元测试可以帮助开发人员验证代码的正确性和提高代码的可维护性&#xff0c;确保代码的稳定性和可…

综合服务 IntServ

目录 综合服务 IntServ IntServ 定义的两类服务 IntServ 的四个组成部分 流 (flow) 资源预留协议 RSVP RSVP 协议的工作原理 IntServ 体系结构在路由器中的实现 综合服务 IntServ 体系结构存在的主要问题 综合服务 IntServ 综合服务 IntServ (Integrated Services) 可…

力扣随笔删除有序数组中的重复项(简单26)

思路&#xff1a;根据类似于滑动窗口的思想&#xff0c;定义一个指针&#xff1b;使指针左边的区域全部为不重复元素&#xff08;包括指针所指的数字&#xff09; 以示例2为例&#xff0c;left&#xff1a;红色加粗 遍历指针i&#xff1a;黑色加粗 窗口范围&#xff0c;左边界到…

区分服务 DiffServ

目录 区分服务 DiffServ 区分服务的基本概念 区分服务 DiffServ 的要点 每跳行为 PHB DiffServ 定义的两种 PHB 区分服务 DiffServ 区分服务的基本概念 由于综合服务 IntServ 和资源预留协议 RSVP 都较复杂&#xff0c;很难在大规模的网络中实现&#xff0c;因此 IET…

基于Prony算法的系统参数辨识matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 Prony算法是一种用于信号处理和系统辨识的经典方法&#xff0c;特别适用于线性时不变系统&#xff08;LTI&#xff09;的频率响应分析以及模拟复指数信号序列。其…

golang通过http访问外部网址

不同项目之前,通过http访问,进行数据沟通 先设定一个接口,确认外部能访问到 PHP写一个接口 public function ceshi_return() {$data $this->request->param();$id $data[id];$res Db::name(user)->field(id,status,price,name)->where([id>$id])->find…

无人集群试验评估现状及技术方法综述

源自&#xff1a;系统工程与电子技术 作者&#xff1a;赵蕊蕊, 于海跃, 游雅倩, 张涛, 陶敏, 姜江 “人工智能技术与咨询” 发布 摘 要 试验评估是促进装备系统作战能力生成和实战化应用的重要手段。无人集群依靠自组网实现复杂交互, 具备典型的智能性和涌现性, 开展无人集…

深度学习在过冷沸腾气泡动力学分割中的应用

Application of deep learning for segmentation of bubble dynamics in subcooled boiling 深度学习在过冷沸腾气泡动力学分割中的应用 期刊信息&#xff1a;International Journal of Multiphase Flow 2023 级别&#xff1a;EI检索 SCI升级版工程技术2区 SCI基础版工程技术3区…

Flask基础学习4

19-【实战】问答平台项目结构搭建_剪_哔哩哔哩_bilibili 参考如上大佬的视频教程&#xff0c;本博客仅当学习笔记&#xff0c;侵权请联系删除 问答发布的web前端页面实现 register.html {% extends base.html %}{% block head %}<link rel"stylesheet" href&q…

VSCode远程开发 Windows11 Linux

问题背景 之前一直用JetBrains的Gateway和本地Linux虚拟机开发&#xff0c;不过笔记本配置不够&#xff0c;太卡了。最近租了个国外的便宜服务器&#xff0c;JetBrains的Gateway总断连&#xff0c;也不知道为什么&#xff0c;所以试试VSCode。 本地 Windows 11 &#xff0c;远…

matlab新能源汽车三自由度操纵稳定性分析及优化

1、内容简介 略 可以交流、咨询、答疑 55-新能源汽车三自由度操纵稳定性分析及优化 2、内容说明 略 摘 要 电动化是节能减排、寻求替代能源的最佳途径&#xff0c;已成为行业共识&#xff0c;论文基于江西科技学院桑塔纳轿车油改气项目&#xff0c;在拆除发动机、变速…