Uncertainty-Aware Mean Teacher(UA-MT)

Uncertainty-Aware Mean Teacher

  • 0 FQA:
  • 1 UA-MT
    • 1.1 Introduction:
    • 1.2 semi-supervised segmentation
    • 1.3 Uncertainty-Aware Mean Teacher Framework
  • 参考:

0 FQA:

Q1: 不确定感知是什么意思?不确定信息是啥?
Q2:这篇文章的精妙的点在哪?
Q3:MC dropout可以用在分类上面吗?因为原文是用在分割上面的。
Q4:mc dropout是放在哪里? 放在教师上还是学生上?为什么?
Q5: 怎么保留低不确定性,和怎么利用高不确定性的呢
Q6: **不确定图是啥? 怎么生成的? **

A2: 概括来看,这篇文章就是改进了一下无标签的一致性损失函数。 这篇文章的精妙点在于,通过教师的mc dropout来估计每个目标预测的不确定性,在估计不确定性的指导下,计算一致性损失时过滤掉不可靠的预测,只保留可靠的预测。 让学生从教师的可靠的知识中学习,增加教师知识的可靠性。 其实就是多输出几次结果,然后取均值的感觉,然后避免网络的误差。
A3:理论上感觉是可以的,因为mc dropout 就相当于多推理几次,可能不同的点在于如何计算不确定性图。因为分割是体积,而分类是分类结果。
A4: 通过mc 让
教师更加确信自己教的知识
,学生也会学的更好。
A6: 其实也没有啥不确定性图,只不过是为了掩饰mc 之后出来的东西。其实就是多了一个计算熵值的步骤。有了这个map 看起来更加花里胡哨。

1 UA-MT

论文完整标题:Uncertainty-aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation

代码:https://github.com/yulequan/UA-MT

1.1 Introduction:

本文提出了一种新的基于不确定性的半监督学习框架(UA-MT),通过额外利用未标记的数据从3D MR图像中分割左心房。和Mean Teacher模型一样,该方法鼓励分割预测在相同输入的不同扰动下保持一致。
具体地说,本文建立了一个教师模型和一个学生模型,学生模型通过最小化标注数据上的分割监督损失和所有输入数据上的与教师模型预测输出的一致性损失进行优化。
但未标注的输入中没有提供ground truth,教师模型中的预测目标可能不可靠且有噪声。在这方面,我们设计了(UA-MT)框架,学生模型通过利用教师模型的不确定性信息,逐渐从有意义和可靠的目标中学习。除了生成目标输出,教师模型还通过Monte Carlo Dropout 估计每个目标预测的不确定性。在估计不确定性的指导下,计算一致性损失时过滤掉不可靠的预测,只保留可靠的预测(低不确定性)。因此,学生模型得到了优化,得到了更可靠的监督,并反过来鼓励教师模型生成更高质量的目标。

image.png

1.2 semi-supervised segmentation

半监督分割:EMA:
有监督损失,无监督一致性损失;

在这里插入图片描述

1.3 Uncertainty-Aware Mean Teacher Framework

如果没有未标记输入中的注释,教师模型的预测目标可能不可靠且有噪声。因此,我们设计了一种不确定性感知方案,使学生模型能够逐渐从更可靠的目标中学习。给定一批训练图像,教师模型不仅生成目标预测,还估计每个目标的不确定性。然后通过一致性损失来优化学生模型,该模型在估计不确定性的指导下仅关注置信目标

Uncertainty Estimation:受贝叶斯网络中不确定性估计的启发,我们使用蒙特卡罗 Dropout 来估计不确定性
在随机 dropout 下对教师模型执行 T 次随机前向传递,并为每个输入量输入高斯噪声。
因此,对于输入中的每个体素,我们获得一组softmax概率向量:{pt}_t *T。我们选择 预测熵 作为近似不确定性的度量,因为它有一个固定的范围[8]。
采用
预测熵
,作为度量方式来近似获取到不确定性:UAMT 算法过滤掉分割预测中不确定值较高的像素,仅保留可信的像素作为学生模型学习的目标

image.png
其中 ptc 是第 t 次预测中第 c 个类别的概率。请注意,不确定性是在体素水平上估计的,整个体积** U 的不确定性**是 {u} ∈ RH×W ×D。

Uncertainty-Aware Consistency Loss.:在估计不确定性 U 的指导下,我们过滤掉相对不可靠**(高不确定性)的预测,并仅选择某些预测作为学生模型学习的目标。特别是,对于我们的半监督分割任务,我们将不确定性感知一致性损失 Lc 设计为教师和学生模型的体素级均方误差(MSE)损失**,仅用于最确定的预测:

过滤掉高不确定性的,也就是熵大于某个值的。熵值越大,不确定性越高。

在这里插入图片描述

式中,I(·)为指示函数; f ′ v 和 fv 分别是教师模型和学生模型在第 v 个体素处的预测; uv 是第 v 个体素处的估计不确定性 U; H是选择最确定目标的阈值。
通过我们在训练过程中的不确定性感知一致性损失,学生和教师都可以学到更可靠的知识,从而减少模型的整体不确定性。

参考:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702978.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试——锁

​ 公平锁: 是指多个线程按照申请锁的顺序来获取锁,有点先来后到的意思。在并发环境中,每个线程在获取锁时会先查看此锁维护的队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会…

idea 2018.3永久简单激活。激活码

1.打开hosts文件将 0.0.0.0 account.jetbrains.com 添加到文件末尾 C:\Windows\System32\drivers\etc\hosts 2.注册码: MNQ043JMTU-eyJsaWNlbnNlSWQiOiJNTlEwNDNKTVRVIiwibGljZW5zZWVOYW1lIjoiR1VPIEJJTiIsImFzc2lnbmVlTmFtZSI6IiIsImFzc2lnbmVlRW1haWwiOiIiLCJsaW…

数据结构知识点总结-线性表(1)-线性表的定义、基本操作、顺序表表示

线性表 定义 线性表是具有相同数据类型的N(N>0)个元素的有限序列,其中N为表长,当N0时线性表是一张空表。 线性表的逻辑特征:每个非空的线性表都有一个表头元素和表尾元素,中间的每个元素有且仅有一个直…

有趣的CSS - 弹跳的圆

大家好,我是 Just,这里是「设计师工作日常」,今天分享的是用css写一个好玩的不停弹跳变形的圆。 《有趣的css》系列最新实例通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页…

亿道丨三防平板电脑厂家丨三防平板PDA丨三防工业平板:数字时代

在当今数字化时代,我们身边的世界变得越来越依赖于智能设备和无线连接。其中,三防平板PDA(Personal Digital Assistant)作为一种功能强大且耐用的数字工具,正在引领我们进入数字世界的全新征程。 三防平板PDA结合了平板…

LeetCode 0235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点)

【LetMeFly】235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点) 力扣题目链接:https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/ 给定一个二叉搜索树, 找到该树中两个指定节点的最近公…

2024全国水科技大会暨减污降碳协同增效创新与实践论坛(八)

召集人:王洪臣 中国人民大学环境学院教授 姚 宏 北京交通大学教授 为大会征集“绿色低碳污水厂案例”,欢迎各相关单位积极报名! 一、会议背景 生态环境部、国家发展和改革委员会等七部门印发《减 污降碳协同增效实施方案》中明确提出推进水…

【C++】C++对C语言的关系,拓展及命名空间的使用

文章目录 📝C简述C融合了3种不同的编程方式:C和C语言关系是啥呢?C标准 🌠C应用🌠C语言优点第一个C程序 🌠命名空间🌠命名空间的使用命名空间的定义 🌠怎么使用命名空间中的内容呢&am…

测试C#使用ViewFaceCore实现图片中的人脸遮挡

基于ViewFaceCore和DlibDotNet都能实现人脸识别,准备做个遮挡图片中人脸的程序,由于暂时不清楚DlibDotNet返回的人脸尺寸与像素的转换关系,最终决定使用ViewFaceCore实现图片中的人脸遮挡。   新建Winform项目,在Nuget包管理器中…

【深度学习】微调ChatGlm3-6b

1.前言 指令微调ChatGlm3-6b。微调教程在github地址中给出,微调环境是Qwen提供的docker镜像为环境。 镜像获取方式:docker pull qwenllm/qwen:cu117 github地址:https://github.com/liucongg/ChatGLM-Finetuning 2.微调过程 github地址中的教…

Excel工作表控件实现滚动按钮效果

实例需求:工作表中有多个Button控件(工作表Form控件)和一个ScrollBar控件(工作表ActiveX控件,名称为ScrollBar2),需要实现如下图所示效果。点击ScrollBar控件实现按钮的滚动效果,实际…

2024.2.25 在centos8.0安装docker

2024.2.25 在centos8.0安装docker 安装过程比较简单,按顺序安装即可,简要步骤: 一、更新已安装的软件包: sudo yum update二、安装所需的软件包,允许 yum 通过 HTTPS 使用存储库: sudo yum install -y …

飞天使-k8s知识点22-kubernetes实操7-ingress

文章目录 ingress环境准备准备service和pod验证效果 https 代理效果 ingress 在 Kubernetes 中,Ingress 是一种 API 对象,它管理外部访问集群内部服务的规则。你可以将其视为一个入口,它可以将来自集群外部的 HTTP 和 HTTPS 路由到集群内部的…

静态时序分析:SDC约束命令set_load详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 set_load命令用于指定端口(port)或线网(net)的负载电容,该指令的BNF范式(有关BNF范式,可以参考以往文章)为&#…

Java核心-核心类与API(4)

话接上回,继续核心类与API的学习,最后介绍一下Object类以及与数学、日期/时间有关的类,就结束该部分的学习了,其他的根据需要自行了解。 一、Object类 1、概述 Object 是 Java 类库中的一个特殊类,也是所有类的父类…

linux-并发通信

一.linux-tcp通信框架 1.基础框架 1.1 tcp 服务器框架 1.套接字 #include <sys/socket.h> int socket(int domain, int type, int protocol);
 返回的文件描述符可以指向当前的socket&#xff0c;后续通过对文件描述符的访问就可以配置这个socket 成功时返回文件…

nccl2安装指南

https://developer.nvidia.com/nccl/nccl-download 旧版本安装: https://developer.nvidia.com/nccl/nccl-legacy-downloads 找到你对应的CUDA版本 我这里选择 deb 文件安装了 sudo dpkg -i nccl-local-repo-ubuntu2004-2.16.5-cuda11.8_1.0-1_amd64.debsudo cp /var/nccl-lo…

使用 React 和 MUI 创建多选 Checkbox 树组件

在本篇博客中&#xff0c;我们将使用 React 和 MUI&#xff08;Material-UI&#xff09;库来创建一个多选 Checkbox 树组件。该组件可以用于展示树形结构的数据&#xff0c;并允许用户选择多个节点。 前提 在开始之前&#xff0c;确保你已经安装了以下依赖&#xff1a; Reac…

政安晨:【机器学习基础】(二)—— 评估机器学习模型改进

根据前面我的文章看来&#xff0c;咱们只能控制可以观察到的东西。因为您的目标是开发出能够成功泛化到新数据的模型&#xff0c;所以能够可靠地衡量模型泛化能力是至关重要的&#xff0c;咱们这篇文章将正式介绍评估机器学习模型的各种方法。 政安晨的个人主页&#xff1a;政安…

Hikvision SPON IP网络对讲广播系统命令执行漏洞

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 1.漏洞描述 Hikvision Intercom Broadcasting System是中国海康威视&a…