Java面试——锁

公平锁: 是指多个线程按照申请锁的顺序来获取锁,有点先来后到的意思。在并发环境中,每个线程在获取锁时会先查看此锁维护的队列,如果为空,或者当前线程是等待队列的第一个,就占有锁,否则就会加入到等待队列中,以后会按照 FIFO 的规则从队列中取到自己。

非公平锁: 指多个线程获取锁的顺序并不是按照申请锁的顺序,上来就尝试占有锁,如果尝试失败,就再采用类似公平锁的方式获取锁。有可能后申请的线程比先申请的线程优先获取锁,在高并发的情况下,有可能会造成优先级反转或者饥饿现象。

ReentrantLock:并发包中ReentrantLock的创建可以指定构造函数的boolean类型来得到公平锁或非公平锁,默认是false(非公平锁)。非公平的优点在于吞吐量比公平锁大。对于Synchronized锁也是一种非公平锁。

可重入锁(又名递归锁): 指同一线程外层函数获得锁之后,内层递归函数仍然能获取该锁的代码。也就是说,线程可以进入任何一个它已经拥有的锁,所同步的代码块。synchronizedunlock都是可重入锁。

//简单理解,就是方法1 是一个同步方法,里面包含了一个方法2 也是同步方法,但是当进入方法1后,也就获得了方法2的锁,即可重入锁
public synchronized void method1(){System.out.println("方法1 synchronized");method2();
}public synchronized  void method2(){System.out.printf("方法2 synchronized");
}

自旋锁: 是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式尝试获取锁,这样的好处是减少了上下文切换的消耗,确定是循环会消耗CPU。循环比较直到成功为止。

public final int getAndAddInt(Object var1, long var2, int var4){int var5;do{//根据对象和地址偏移量获取内存中的值var5 = this.getIntVolatile(var1, var2);//将获取到的值 var5 传入,此方法内部会先比较var2地址的值是否等于 var5,相等则修改var5值并返回,否则重新进入循环。}while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;
}

手写一个自旋锁: 思想就是通过while中的循环条件来充当锁,当条件成立时,表示未获得锁,进行死循环,直到while条件不成立,也就是获得锁。就退出死循环,执行业务逻辑。具体查看如下代码:

public class Test {public static void main(String[] args) throws Exception {/*执行结果展示:  AA   myLockBB   myLockAA    unLockBB    unLock*  分析:我们 AA 线程休眠了 5秒足以让 BB 线程执行结束,那为什么 BB 执行到 myLock 之后就没有继续执行呢。*  其实,BB 一直执行着,只不过陷入了 while 死循环中,因为 AA 将线程置为非空。*  等到 5 秒后,AA unlock 重新将线程=null时,BB 获取线程并执行任务。over*/Test test = new Test();new Thread(()->{test.myLock();try {TimeUnit.SECONDS.sleep(5);} catch (InterruptedException e) {e.printStackTrace();}test.unLock();},"AA").start();TimeUnit.SECONDS.sleep(1);new Thread(()->{test.myLock();try {TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}test.unLock();},"BB").start();}//对线程保证原子性AtomicReference<Thread> atomicReference = new AtomicReference<>();//获取锁,其实质,将锁看做一个条件判断,只要这个判断能够保证线程安全即可。//如下:我们将线程是否为空作为条件,如果是空的就没锁,自己可以对其加锁,将其值设为自己。//如果使用完,使用unlock 将线程设置为 null,其他线程通过判断来获得锁,其实就像一种约定而已。public void myLock(){Thread thread = Thread.currentThread();System.out.println(thread.getName()+"   myLock");while (!atomicReference.compareAndSet(null,thread)){}}//释放锁public void unLock(){Thread thread = Thread.currentThread();atomicReference.compareAndSet(thread,null);System.out.println(thread.getName()+"    unLock");}
}

自旋锁的优点主要包括:
【1】减少线程阻塞:对于锁竞争不激烈且锁占用时间短暂的情况,自旋锁能够显著提高性能,因为它减少了线程因阻塞而产生的上下文切换开销。
【2】避免内核态切换:与非自旋锁相比,自旋锁在尝试获取锁失败时会继续执行循环而不立即陷入内核态,这样可以避免线程在用户态和内核态之间的频繁切换,这在一定程度上提高了系统的整体性能。

然而,自旋锁也存在一些缺点:
【1】高负载下效率低下:如果锁竞争激烈或持有锁的线程需要长时间执行同步块,自旋锁会因为不断重复无效的旋转操作而导致性能下降。在这种情况下,自旋锁的消耗可能会超过线程阻塞后的恢复成本,因此应该关闭自旋锁以避免不必要的性能损失。1234
【2】可能存在不公平性:某些自旋锁实现(如Java中的)不是完全公平的,这意味着它们可能无法为等待时间最长线程提供优先权,这可能导致所谓的“线程饥饿”问题。
【3】单核处理器上的限制:在单核处理器上,自旋锁实际上没有真正的并行性,因为即使当前线程不阻塞其他线程,锁仍然不会被释放,导致资源的浪费。此外,如果处理器数量少于线程数量,自旋锁也可能造成不必要的资源浪费。4
【4】不适合计算密集型任务:如果任务主要是计算密集型的,使用自旋锁可能会导致性能下降,因为自旋锁会占用CPU资源,而在计算密集型任务中,减少锁的使用可能是更优的选择。

综上所述,自旋锁适用于锁竞争不太激烈且锁占用时间较短的场景,但在竞争激烈或锁占用时间较长的情况下,其性能优势不明显,甚至可能导致性能下降。

【独占锁】(写锁): 指该锁只能被一个线程所持有。对ReentrantLockSynchronized而言都是独占锁。
【共享锁】(读锁): 指该锁可被多个线程持有。

【1】不加读写锁时,代码及出现的问题如下:创建5个线程进行写入,5个线程进行读取。

public class ReadWriteLock {private volatile Map map = new HashMap();//写入方法public void put(String k,Object v){System.out.println(Thread.currentThread().getName()+"   开始写入:"+k );try {TimeUnit.MICROSECONDS.sleep(30);}catch (Exception e){e.printStackTrace();}map.put(k,v);System.out.println(Thread.currentThread().getName()+"   写入完成");}//读方法public void get(String k){System.out.println(Thread.currentThread().getName()+"   读数据开始:"+k );try {TimeUnit.MICROSECONDS.sleep(10);}catch (Exception e){e.printStackTrace();}Object v = map.get(k);System.out.println(Thread.currentThread().getName()+"   读数据完场完成"+v);}public static void main(String[] args) {ReadWriteLock readWriteLock = new ReadWriteLock();//写入数据for (int i=1;i<6;i++){final int tempInt = i;new Thread(()->{readWriteLock.put(tempInt+"",tempInt+"");},String.valueOf(i)).start();}//读取数据for(int i=1;i<6;i++){final int tempInt = i;new Thread(()->{readWriteLock.get(tempInt+"");},String.valueOf(i)).start();}}
}

【2】上述代码输出如下:第一个线程未写入完成时,其他线程就进入了该方法,进行了写操作。不符合多线程安全特性。

在这里插入图片描述

【3】加入读写锁:ReentrantReadWriteLock(读写锁)位于JUC包下

public class ReadWriteLock{private volatile Map map = new HashMap();private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();//写入方法public void put(String k,Object v){rwLock.writeLock().lock();try {System.out.println(Thread.currentThread().getName()+"   开始写入:"+k );try {TimeUnit.MICROSECONDS.sleep(30);}catch (Exception e){e.printStackTrace();}map.put(k,v);System.out.println(Thread.currentThread().getName()+"   写入完成");}catch (Exception e){e.printStackTrace();}finally {rwLock.writeLock().unlock();}}//读方法public void get(String k){rwLock.readLock().lock();try {System.out.println(Thread.currentThread().getName()+"   读数据开始:"+k );try {TimeUnit.MICROSECONDS.sleep(10);}catch (Exception e){e.printStackTrace();}Object v = map.get(k);System.out.println(Thread.currentThread().getName()+"   读数据完场完成"+v);} catch (Exception e) {e.printStackTrace();} finally {rwLock.readLock().unlock();}}public static void main(String[] args) {ReadWriteLock readWriteLock = new ReadWriteLock();//写入数据for (int i=1;i<6;i++){final int tempInt = i;new Thread(()->{readWriteLock.put(tempInt+"",tempInt+"");},String.valueOf(i)).start();}//读取数据for(int i=1;i<6;i++){final int tempInt = i;new Thread(()->{readWriteLock.get(tempInt+"");},String.valueOf(i)).start();}}
}

【4】加入读写锁后,输出如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702977.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

停止一个正在运行的线程的正确姿势

1、使用退出标志&#xff0c;使线程正常退出&#xff0c;也就是当run方法完成后线程终止。 2、使用stop方法强行终止&#xff0c;但是不推荐这个方法&#xff0c;因为stop和suspend及resume一样都是过期作 废的方法。 3、使用interrupt方法中断线程。 class MyThread extend…

线性代数的几何意义简单总结

矩阵的意义 矩阵既可以理解为一组&#xff08;列&#xff09;基向量&#xff0c;也可以理解为线性变换。 某个向量左乘矩阵表示向量在用新的基向量表示对应在原始坐标系下的坐标&#xff0c;也可以视为经过线性变换后的坐标。 原始基向量都是单位矩阵&#xff0c;其他矩阵都…

284.【华为OD机试真题】二叉树的广度优先遍历(二叉树的构建和层次遍历—JavaPythonC++JS实现)

🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-二叉树的广度优先遍历二.解题思路三.题解代码P…

idea 2018.3永久简单激活。激活码

1.打开hosts文件将 0.0.0.0 account.jetbrains.com 添加到文件末尾 C:\Windows\System32\drivers\etc\hosts 2.注册码&#xff1a; MNQ043JMTU-eyJsaWNlbnNlSWQiOiJNTlEwNDNKTVRVIiwibGljZW5zZWVOYW1lIjoiR1VPIEJJTiIsImFzc2lnbmVlTmFtZSI6IiIsImFzc2lnbmVlRW1haWwiOiIiLCJsaW…

AutoSAR(基础入门篇)11.2-存储处理与Block

目录 一、NVRAM Block NVRAM Block的类型 二、Fee Block 三、Ea Block 四、总结 同通信的PDU一样,存储功能也需要一些特殊的数据结构来存放和管理我们的NV数据(NV data) 一、NVRAM Block NVRAM Block的作用类似于IPDU,但它们两仅仅只是作用上相似,其功能实现是完全…

数据结构知识点总结-线性表(1)-线性表的定义、基本操作、顺序表表示

线性表 定义 线性表是具有相同数据类型的N&#xff08;N>0&#xff09;个元素的有限序列&#xff0c;其中N为表长&#xff0c;当N0时线性表是一张空表。 线性表的逻辑特征&#xff1a;每个非空的线性表都有一个表头元素和表尾元素&#xff0c;中间的每个元素有且仅有一个直…

有趣的CSS - 弹跳的圆

大家好&#xff0c;我是 Just&#xff0c;这里是「设计师工作日常」&#xff0c;今天分享的是用css写一个好玩的不停弹跳变形的圆。 《有趣的css》系列最新实例通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页…

Leetcode题解20.有效的括号

题目 给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型…

亿道丨三防平板电脑厂家丨三防平板PDA丨三防工业平板:数字时代

在当今数字化时代&#xff0c;我们身边的世界变得越来越依赖于智能设备和无线连接。其中&#xff0c;三防平板PDA&#xff08;Personal Digital Assistant&#xff09;作为一种功能强大且耐用的数字工具&#xff0c;正在引领我们进入数字世界的全新征程。 三防平板PDA结合了平板…

RabbitMQ消息堆积

消息堆积是指在消息队列中&#xff0c;因为生产消息的速度超过消费消息的速度&#xff0c;导致大量消息在队列中积压的现象。在RabbitMQ中&#xff0c;处理消息堆积的策略通常包括以下几个方面&#xff1a; 增加消费者数量&#xff08;水平扩展&#xff09;&#xff1a;通过增加…

【Elasticsearch专栏 07】深入探索:Elasticsearch的倒排索引如何进行模糊查询和通配符查询

文章目录 Elasticsearch的倒排索引如何进行模糊查询和通配符查询01 模糊查询&#xff08;Fuzzy Query&#xff09;02 通配符查询&#xff08;Wildcard Query&#xff09;03 查询性能优化04 总结 Elasticsearch的倒排索引如何进行模糊查询和通配符查询 Elasticsearch的倒排索引…

LeetCode 0235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点)

【LetMeFly】235.二叉搜索树的最近公共祖先&#xff1a;用搜索树性质&#xff08;不遍历全部节点&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/ 给定一个二叉搜索树, 找到该树中两个指定节点的最近公…

2024全国水科技大会暨减污降碳协同增效创新与实践论坛(八)

召集人&#xff1a;王洪臣 中国人民大学环境学院教授 姚 宏 北京交通大学教授 为大会征集“绿色低碳污水厂案例”&#xff0c;欢迎各相关单位积极报名&#xff01; 一、会议背景 生态环境部、国家发展和改革委员会等七部门印发《减 污降碳协同增效实施方案》中明确提出推进水…

Linux下minishell项目的编写

项目目标 1.编写函数打印初始界面以及显示输入的命令&#xff08;由于程序一直执行&#xff0c;需要在循环内执行&#xff09; 2.编写接收用户输入的命令的函数 3.编写使命令与功能匹配的函数 4.将界面输入的字符串分割为命令以及传入函数的数据 5.完成minishell的基本功能…

【C++】C++对C语言的关系,拓展及命名空间的使用

文章目录 &#x1f4dd;C简述C融合了3种不同的编程方式&#xff1a;C和C语言关系是啥呢&#xff1f;C标准 &#x1f320;C应用&#x1f320;C语言优点第一个C程序 &#x1f320;命名空间&#x1f320;命名空间的使用命名空间的定义 &#x1f320;怎么使用命名空间中的内容呢&am…

测试C#使用ViewFaceCore实现图片中的人脸遮挡

基于ViewFaceCore和DlibDotNet都能实现人脸识别&#xff0c;准备做个遮挡图片中人脸的程序&#xff0c;由于暂时不清楚DlibDotNet返回的人脸尺寸与像素的转换关系&#xff0c;最终决定使用ViewFaceCore实现图片中的人脸遮挡。   新建Winform项目&#xff0c;在Nuget包管理器中…

【深度学习】微调ChatGlm3-6b

1.前言 指令微调ChatGlm3-6b。微调教程在github地址中给出&#xff0c;微调环境是Qwen提供的docker镜像为环境。 镜像获取方式&#xff1a;docker pull qwenllm/qwen:cu117 github地址&#xff1a;https://github.com/liucongg/ChatGLM-Finetuning 2.微调过程 github地址中的教…

Excel工作表控件实现滚动按钮效果

实例需求&#xff1a;工作表中有多个Button控件&#xff08;工作表Form控件&#xff09;和一个ScrollBar控件&#xff08;工作表ActiveX控件&#xff0c;名称为ScrollBar2&#xff09;&#xff0c;需要实现如下图所示效果。点击ScrollBar控件实现按钮的滚动效果&#xff0c;实际…

2024.2.25 在centos8.0安装docker

2024.2.25 在centos8.0安装docker 安装过程比较简单&#xff0c;按顺序安装即可&#xff0c;简要步骤&#xff1a; 一、更新已安装的软件包&#xff1a; sudo yum update二、安装所需的软件包&#xff0c;允许 yum 通过 HTTPS 使用存储库&#xff1a; sudo yum install -y …

飞天使-k8s知识点22-kubernetes实操7-ingress

文章目录 ingress环境准备准备service和pod验证效果 https 代理效果 ingress 在 Kubernetes 中&#xff0c;Ingress 是一种 API 对象&#xff0c;它管理外部访问集群内部服务的规则。你可以将其视为一个入口&#xff0c;它可以将来自集群外部的 HTTP 和 HTTPS 路由到集群内部的…