python统计分析——多解释变量的方差分析

参考资料:用python动手学统计学

1、导入库

# 导入库
# 用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
# 用于估计统计模型的库
import statsmodels.formula.api as smf
import statsmodels.api as sm

2、数据准备

本次数据为准预测销售额的模型,包含湿度、气温、天气(晴或雨)、价格4个解释变量。天气为分类变量,其余为连续变量。

sales=pd.read_csv(r"文件路径")
sales

3、数据可视化展示

        在进行数据分析时,第一步永远是可视化。统计、模型化等工作都要放在后面做。由于及时变量有多个,因此这里绘制散点图矩阵。如下

sns.pairplot(data=sales,hue='weather')

        在矩阵图中,可以看出除了气温湿度有明显的正相关关系外,其他因素间没有明显的关系。

4、多解释变量模型

# 拟合多解释变量的模型
# 在定义多解释变量的模型时,解释变量之间用加号连接
lm_sales=smf.ols("sales~weather+humidity+temperature+price",data=sales).fit()
# 输出估计参数
lm_sales.params

5、模型选择

在typeⅠ ANOVA中,如果改变解释变量的顺序,检验结果会不一样。在方差分析中,解释变量的效应是基于残差量化的,变量个数增加时所减少的残差平方和决定了变量的效应。在多解释变量模型中,变量个数增加时所减少的残差平方和决定了变量的效应大小,在这种情况下变量平方和的值会因其添加的顺序不同而不同,对于解释变量是否存在显著性影响的判断也不同。对多解释变量模型进行type Ⅰ ANOVA可能会导致错误的结论。具体示例请查阅:《用python动手学统计学》一书。

type Ⅱ ANOVA是方差分析的一种,它的结果不会因解释变量顺序的不同而不同。typeⅡ ANOVA 根据解释变量减少时所增加的残差平方和量化解释变量的效应。即使解释变量的顺序不同,这种方法的效果也不会改变。通过这种方法得到的组间偏差平方和就叫作调整平方和。

当解释变量只有一个时,type Ⅰ ANOVA与type Ⅱ ANOVA的结果相等。

6、方差分析

# 输出方差分析表
print(sm.stats.anova_lm(lm_sales,typ=2))

由此方差分析表可知,humidity的p值为0.578,湿度对销售额没有显著影响。

结合前面的可视化作图,可知气温和湿度的相关性很强,因此可能存在这种情况:如果模型中包含了气温,就无法认为湿度会对销售额产生显著影响。下面我们继续对不含湿度的模型进行方差分析。

# 拟合不含湿度的模型
mod_non_humi=smf.ols('sales~weather+temperature+price',data=sales).fit()
#输出方差分析表
print(sm.stats.anova_lm(mod_non_humi,typ=2).round(3))

 由上表可知,目前所有变量都是必要的,至此,变量的选择结束。

系数等结果的解读应该使用变量选择后的模型进行,不应该将通过错误的变量组合进行模型化的结果用于预测或解读。

因此,本例的模型参数如下:

mod_non_humi.params

7、使用AIC进行变量选择

如果使用AIC 进行变量选择,就没有必要像方差分析那样更滑计算方法,直接建模并计算AIC即可。

print('包含所有变量的模型:',lm_sales.aic.round(3))
print('不含湿度的模型:',mod_non_humi.aic.round(3))

不含湿度的模型的AIC更小,所以湿度不应该包含在销售额预测模型中。原则上应该对比所有变量组合的AIC。

使用AIC进行变量选择的过程是比较固定的。它和系数t检验不同,多水平的变量不会导致多重假设检验问题,所得模型的含义永远是“对未知数据的预测误差最小的变量组合”。AIC也没有检验的非对称性问题。不过,与不能过度信任p值类似,我们也不能过度信任AIC,还应该从系数的含义、变量选择的结果、残差等多个方面综合评估模型。

8、多重共线性

在解释变量之间相关性很强时出现的问题就是多重共线性。在本例中,气温与湿度就是相关的,在解读类似模型时需要注意这一点。

多重共线性问题最简单的解决方案就是去掉强相关变量中的一个。多重共线性会对系数的解读造成干扰,我们应该先进行变量选择再解读结果。

在变量选择的过程中有时会使用检验,但如果变量之间强相关(如相关系数接近1),检验所得的p值也会收到干扰。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702856.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 10 音量UI更新解析

1 VolumeUI 的启动 由于VolumeUI 是继承 SystemUI 的,所以它的启动方式和 SystemUI 的启动方式一样。 直接看 VolumeUI 的start()方法 frameworks/base/packages/SystemUI/src/com/android/systemui/volume/VolumeUI.java Override public void start() {boolean …

Linux基础命令—进程管理

基础知识 linux进程管理 什么是进程 开发写代码->代码运行起来->进程 运行起来的程序叫做进程程序与进程区别 1.程序是一个静态的概念,主要是指令集和数据的结合,可以长期存放在操作系统中 2.进程是一个动态的概念,主要是程序的运行状态,进程存在生命周期,生命周期结…

YY调音台:直播主播的体验

我是直播平台的主播,日常工作就是在直播间里打游戏、唱歌、聊天之类的。刚开始的时候我的直播工具只有一台电脑,收音也是用的我自己常用的耳机,设备比较简陋,直播间的用户留存率也不高。但是我相信天道酬勤,每天晚上坚…

javaScript数组去重的几种实现方式——适用非引用数据去重

最传统的使用循环遍历 //最传统的使用循环遍历 function getUnique(arr) {let newArr [];for (let i 0; i < arr.length; i) {for (let j i 1; j < arr.length; j) {if (arr[i] arr[j]) {i; //相同丢掉前面的元素}}newArr.push(arr[i]);}return newArr; } 利用Set实…

Seata分布式事务实战XATCC模式

目录 XA模式 XA 模式的使用 Spring Cloud Alibaba整合Seata XA TCC模式 TCC模式接口改造 TCC如何控制异常 Spring Cloud Alibaba整合Seata TCC XA模式 整体机制 在 Seata 定义的分布式事务框架内&#xff0c;利用事务资源&#xff08;数据库、消息服务等&#xff09;对…

【Python从入门到进阶】49、当当网Scrapy项目实战(二)

接上篇《48、当当网Scrapy项目实战&#xff08;一&#xff09;》 上一篇我们正式开启了一个Scrapy爬虫项目的实战&#xff0c;对当当网进行剖析和抓取。本篇我们继续编写该当当网的项目&#xff0c;讲解刚刚编写的Spider与item之间的关系&#xff0c;以及如何使用item&#xff…

【python】0、超详细介绍:json、http

文章目录 一、json二、http2.1 json 读取 request 序列化 三、基本类型3.1 decimal 四、图像4.1 颜色格式转换 一、json import json f open(data.json) # open json file data json.load(f) # 读出 json object for i in data[emp_details]: # 取出一级属性 emp_details, …

云尚办公-0.3.0

5. controller层 import pers.beiluo.yunshangoffice.model.system.SysRole; import pers.beiluo.yunshangoffice.service.SysRoleService;import java.util.List;//RestController&#xff1a;1.该类是控制器&#xff1b;2.方法返回值会被写进响应报文的报文体&#xff0c;而…

ChatRTX安装教程

介于本人一直想将现有的智慧城市的文档结合大模型RAG实现知识库问答助手&#xff0c;借着Chat With RTX的风潮正好将机器人和知识库合二为一&#xff0c;方便以后对众多文件进行查阅。 一、概要 Chat With RTX 是一个 Demo&#xff0c;用来将您自己的资料&#xff08;文档、笔…

关于硅的制造芯片的过程

芯片是如何制作的&#xff1f; 先将硅融化制成硅晶片&#xff0c;再用光刻机印压电路。 bilibili芯片制作视频 硅晶片作为现代芯片的主要元件&#xff0c;广泛用于集成电路。 首先将多晶硅放入特制的密封炉&#xff0c;排除其中空气后加热到1420摄氏度&#xff0c;将融化的硅放…

第三节:kafka sarama 遇到Bug?

文章目录 前言一、先上结果二、刨根问底总结 前言 前面两节&#xff0c;我们已经简单应用了sarama的两个类型Client和ClusterAdmin&#xff0c;其中有一个案例是获取集群的ControllerId&#xff0c;但是在后面的测试过程过程中&#xff0c;发现一个问题&#xff0c;返回的Cont…

vue菜单栏跳转方案

vue菜单栏跳转方案 <template><div><el-container style"height: 100vh"><el-aside width"200px" style"background-color: #b3c0d1"><el-menuopen"handleOpen"close"handleClose"select"h…

MongoDB聚合运算符:$bitXor

文章目录 语法用法举例 $bitXor聚合运算符返回整数或长整数数组元素按位异或的结果。 语法 { $bitXor: { [ <expression1>, <expression2>, ... ] }用法 如果操作数包括整型和长整型值&#xff0c;MongoDB会对计算出的整数结果进行符号扩展&#xff0c;并返回长…

处理器分支预测(Branch predictor)原理和实现

C++实例 我们先给一个实例,在windows系统下,使用VisualStudio的debug模式,编译和运行程序: #include <algorithm> #include <ctime> #include <iostream>int main(){// Generate dataconst unsigned arraySize = 32768;int data[arraySize];for (unsig…

循环队列和链表队列

循环队列&#xff1a; #include <iostream> using namespace std; const int MAX_SIZE 100; template <class DataType> /* 循环队列可以想象成一个环形&#xff0c;里面有一个个的格子&#xff0c;也就是环形数组 front表示首个&#xff08;但是这不会一直是0&a…

【PyQt5桌面应用开发】3.Qt Designer快速入门(控件详解)

一、Qt Designer简介 Qt Designer是PyQt程序UI界面的实现工具&#xff0c;可以帮助我们快速开发 PyQt 程序的速度。它生成的 UI 界面是一个后缀为 .ui 的文件&#xff0c;可以通过 pyiuc 转换为 .py 文件。 Qt Designer工具使用简单&#xff0c;可以通过拖拽和点击完成复杂界面…

仿12306校招项目业务二(列车检索)

目录 验证数据 加载城市数据 查询列车站点信息 查询列车余票信息 构建列车返回数据 12306 项目中列车数据检索接口路径 &#xfeff; TicketController的pageListTicketQuery&#xfeff;。 GetMapping("/api/ticket-service/ticket/query")public Result<T…

查看笔记本电池健康状态-windows11

在 Windows 11 中获取详细的电池报告 Windows 11 中内置的 Powerfg 命令行选项来生成电池报告。 在任务栏上选择“搜索”&#xff0c;键入“cmd”&#xff0c;长按&#xff08;或右键单击&#xff09;“命令提示符”&#xff0c;然后选择“以管理员身份运行” ->“是”。 …

Mac使用K6工具压测WebSocket

commend空格 打开终端&#xff0c;安装k6 brew install k6验证是否安装成功 k6 version设置日志级别为debug export K6_LOG_LEVELdebug执行脚本&#xff08;进入脚本所在文件夹下&#xff09; k6 run --vus 100 --duration 10m --out csvresult.csv script.js 脚本解释&…

自定义神经网络三之梯度和损失函数激活函数

文章目录 前言梯度概述梯度下降算法梯度下降的过程 optimize优化器 梯度问题梯度消失梯度爆炸 损失函数常用的损失函数损失函数使用原则 激活函数激活函数和损失函数的区别激活函数Relu-隐藏层激活函数Sigmoid和Tanh-隐藏层Sigmoid函数Tanh&#xff08;双曲正切&#xff09; &l…