C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码

1 模拟退火

*问题:**给定一个成本函数f:r^n–>r*,找到一个 n 元组,该元组最小化 f 的值。请注意,最小化函数值在算法上等同于最大化(因为我们可以将成本函数重新定义为 1-f)。 很多有微积分/分析背景的人可能都熟悉单变量函数的简单优化。例如,函数 f(x) = x^2 + 2x 可以通过将一阶导数设置为零来优化,从而获得产生最小值 f(-1) = -1 的解 x = -1 。这种技术适用于变量很少的简单函数。然而,通常情况下,研究人员对优化几个变量的函数感兴趣,在这种情况下,只能通过计算获得解。

一个困难的优化任务的极好例子是芯片平面规划问题。假设你在英特尔工作,你的任务是设计集成电路的布局。您有一组不同形状/大小的模块,以及可以放置模块的固定区域。你想要达到的目标有很多:最大化导线连接元件的能力,最小化净面积,最小化芯片成本,等等。考虑到这些,您创建了一个成本函数,取所有,比如说, 1000 个变量配置,并返回一个代表输入配置“成本”的实数值。我们称之为目标函数,因为目标是最小化它的值。 一个简单的算法是完全的空间搜索——我们搜索所有可能的配置,直到找到最小值。这对于变量很少的函数来说可能就足够了,但是我们想到的问题需要这样一个强力算法来玩 *O(n!)*。

由于这类问题和其他 NP 难问题的计算困难,许多优化试探法已经被开发出来,试图产生一个好的,尽管可能是次优的值。在我们的例子中,我们不一定需要找到一个严格的最优值——找到一个接近最优的值将满足我们的目标。一种广泛使用的技术是模拟退火,通过它我们引入了一定程度的随机性,有可能从一个更好的解转移到一个更差的解,试图逃离局部极小值并收敛到一个更接近全局最优的值。

模拟退火是基于冶金实践,通过这种实践,材料被加热到高温并冷却。在高温下,原子可能会不可预测地移动,通常会随着材料冷却成纯晶体而消除杂质。这是通过模拟退火优化算法复制的,能量状态对应于当前解。 在这个算法中,我们定义了一个初始温度和一个最低温度,初始温度通常设置为 1,最低温度的数量级为 10^-4.当前温度乘以某个分数α,然后降低,直到达到最低温度。对于每个不同的温度值,我们运行核心优化例程的次数是固定的。优化程序包括找到一个相邻解并以概率e^(f(c–f(n)】接受它,其中 c 是当前解而 n 是相邻解。通过对当前解施加微小的扰动来找到相邻解。这种随机性有助于避开优化启发式算法的常见陷阱——陷入局部极小值。通过潜在地接受一个比我们目前拥有的更差的最优解,并以与成本增加相反的概率接受它,算法更有可能收敛到全局最优。设计一个邻居函数是相当棘手的,必须在个案的基础上完成,但以下是在位置优化问题中寻找邻居的一些想法。

  • 在随机方向上将所有点移动 0 或 1 个单位
  • 随机移动输入元素
  • 交换输入序列中的随机元素
  • 置换输入序列
  • 将输入序列分成随机数量的段和置换段

一个警告是,我们需要提供一个初始解决方案,以便算法知道从哪里开始。这可以通过两种方式来实现:(1)使用关于问题的先验知识来输入良好的起点,以及(2)生成随机解。尽管生成随机解更糟糕,有时会抑制算法的成功,但对于我们对环境一无所知的问题,这是唯一的选择。

还有许多其他优化技术,尽管模拟退火是一种有用的随机优化启发式方法,适用于大型离散搜索空间,在这些空间中,随着时间的推移,最优性是优先的。下面,我包含了一个基于位置的模拟退火的基本框架(可能是模拟退火最适用的优化风格)。当然,成本函数、候选生成函数和邻居函数必须根据手头的具体问题来定义,尽管核心优化例程已经实现。

2 源程序(文本格式)

using System;
using System.Text;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// 算法核心数据类
    /// 含:方差系数均方根误差,配置参数(数组)
    /// </summary>
    public class Anneal_Solution
    {
        /// <summary>
        /// 方差系数均方根误差
        /// Coefficient of Variance Root Mean Squared Error
        /// 默认初值0.0;不超过1.0;
        /// </summary>
        public double CVRMSE { get; set; } = 0.0;
        /// <summary>
        /// 配置参数(数组)
        /// 整型数组;无初值(null);
        /// </summary>
        public int[] Config { get; set; } = null;
        /// <summary>
        /// (无参)默认构造函数
        /// </summary>
        public Anneal_Solution()
        {
        }
        /// <summary>
        /// (有参)构造函数
        /// </summary>
        /// <param name="CVRMSE">方差系数均方根误差</param>
        /// <param name="configuration">配置参数(数组)</param>
        public Anneal_Solution(double CVRMSE, int[] configuration)
        {
            this.CVRMSE = CVRMSE;
            Config = configuration;
        }
    }

    /// <summary>
    /// 模拟退火算法
    /// </summary>
    public class Simulated_Annealing
    {
        private static Random rand { get; set; } = new Random((int)DateTime.Now.Ticks);

        public static string Solve(int M = 15, int N = 15, double T_Minium = 0.0001, double Alpha = 0.9, int Maxium_Iterations = 100)
        {
            string[,] sourceArray = new string[M, N];
            Anneal_Solution min = new Anneal_Solution(double.MaxValue, null);
            Anneal_Solution currentSol = Rand_Solution(M);

            double temperature = 1.0;
            while (temperature > T_Minium)
            {
                for (int i = 0; i < Maxium_Iterations; i++)
                {
                    if (currentSol.CVRMSE < min.CVRMSE)
                    {
                        min = currentSol;
                    }

                    Anneal_Solution newSol = Neighbor(currentSol);
                    double ap = Math.Pow(Math.E, (currentSol.CVRMSE - newSol.CVRMSE) / temperature);
                    if (ap > rand.NextDouble())
                    {
                        currentSol = newSol;
                    }
                }
                temperature *= Alpha;
            }
            #endregion

            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sourceArray[i, j] = "X";
                }
            }

            foreach (int k in min.Config)
            {
                int[] coord = Index_To_Points(M, N, k);
                sourceArray[coord[0], coord[1]] = "-";
            }

            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sb.Append(sourceArray[i, j] + ", ");
                }
                sb.AppendLine("<br>");
            }
            return sb.ToString();
        }

        public static Anneal_Solution Neighbor(Anneal_Solution currentSol)
        {
            return currentSol;
        }

        public static Anneal_Solution Rand_Solution(int n)
        {
            int[] a = new int[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = i + 1;
            }
            return new Anneal_Solution(-1, a);
        }

        public static double Cost(int[] inputConfiguration)
        {
            return -1;
        }

        public static int[] Index_To_Points(int M, int N, int index)
        {
            int[] points = { index % M, index / M };
            return points;
        }
    }
}
 

3 代码格式

using System;
using System.Text;namespace Legalsoft.Truffer.Algorithm
{/// <summary>/// 算法核心数据类/// 含:方差系数均方根误差,配置参数(数组)/// </summary>public class Anneal_Solution{/// <summary>/// 方差系数均方根误差/// Coefficient of Variance Root Mean Squared Error/// 默认初值0.0;不超过1.0;/// </summary>public double CVRMSE { get; set; } = 0.0;/// <summary>/// 配置参数(数组)/// 整型数组;无初值(null);/// </summary>public int[] Config { get; set; } = null;/// <summary>/// (无参)默认构造函数/// </summary>public Anneal_Solution(){}/// <summary>/// (有参)构造函数/// </summary>/// <param name="CVRMSE">方差系数均方根误差</param>/// <param name="configuration">配置参数(数组)</param>public Anneal_Solution(double CVRMSE, int[] configuration){this.CVRMSE = CVRMSE;Config = configuration;}}/// <summary>/// 模拟退火算法/// </summary>public class Simulated_Annealing{private static Random rand { get; set; } = new Random((int)DateTime.Now.Ticks);public static string Solve(int M = 15, int N = 15, double T_Minium = 0.0001, double Alpha = 0.9, int Maxium_Iterations = 100){string[,] sourceArray = new string[M, N];Anneal_Solution min = new Anneal_Solution(double.MaxValue, null);Anneal_Solution currentSol = Rand_Solution(M);double temperature = 1.0;while (temperature > T_Minium){for (int i = 0; i < Maxium_Iterations; i++){if (currentSol.CVRMSE < min.CVRMSE){min = currentSol;}Anneal_Solution newSol = Neighbor(currentSol);double ap = Math.Pow(Math.E, (currentSol.CVRMSE - newSol.CVRMSE) / temperature);if (ap > rand.NextDouble()){currentSol = newSol;}}temperature *= Alpha;}#endregionfor (int i = 0; i < sourceArray.GetLength(0); i++){for (int j = 0; j < sourceArray.GetLength(1); j++){sourceArray[i, j] = "X";}}foreach (int k in min.Config){int[] coord = Index_To_Points(M, N, k);sourceArray[coord[0], coord[1]] = "-";}StringBuilder sb = new StringBuilder();for (int i = 0; i < sourceArray.GetLength(0); i++){for (int j = 0; j < sourceArray.GetLength(1); j++){sb.Append(sourceArray[i, j] + ", ");}sb.AppendLine("<br>");}return sb.ToString();}public static Anneal_Solution Neighbor(Anneal_Solution currentSol){return currentSol;}public static Anneal_Solution Rand_Solution(int n){int[] a = new int[n];for (int i = 0; i < n; i++){a[i] = i + 1;}return new Anneal_Solution(-1, a);}public static double Cost(int[] inputConfiguration){return -1;}public static int[] Index_To_Points(int M, int N, int index){int[] points = { index % M, index / M };return points;}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701847.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Llama2模型的优化版本:Llama-2-Onnx

Llama2模型的优化版本&#xff1a;Llama-2-Onnx。 Llama-2-Onnx是Llama2模型的优化版本。Llama2模型由一堆解码器层组成。每个解码器层&#xff08;或变换器块&#xff09;由一个自注意层和一个前馈多层感知器构成。与经典的变换器相比&#xff0c;Llama模型在前馈层中使用了不…

YOLOv5算法进阶改进(16)— 更换Neck网络之GFPN(源自DAMO-YOLO)

前言:Hello大家好,我是小哥谈。GFPN(Global Feature Pyramid Network)是一种用于目标检测的神经网络架构,它是在Faster R-CNN的基础上进行改进的,旨在提高目标检测的性能和效果。其核心思想是引入全局特征金字塔,通过多尺度的特征融合来提取更丰富的语义信息。具体来说,…

用Python实现创建十二星座数据分析图表

下面小编提供的代码中&#xff0c;您已经将pie.render()注释掉&#xff0c;并使用了pie.render_to_file(十二星座.svg)来将饼状图渲染到一个名为十二星座.svg的文件中。这是一个正确的做法&#xff0c;如果您想在文件中保存图表而不是在浏览器中显示它。 成功创建图表&#xf…

贪心算法---前端问题

1、贪心算法—只关注于当前阶段的局部最优解,希望通过一系列的局部最优解来推出全局最优----但是有的时候每个阶段的局部最优之和并不是全局最优 例如假设你需要找给客户 n 元钱的零钱&#xff0c;而你手上只有若干种面额的硬币&#xff0c;如 1 元、5 元、10 元、50 元和 100…

李宏毅2023机器学习作业1--homework1——python语法

# 定义list del_col del_col [0, 38, 39, 46, 51, 56, 57, 64, 69, 74, 75, 82, 87] # 删除raw_x_train中del_col的列&#xff0c;axis为1代表删除列 raw_x_train np.delete(raw_x_train, del_col, axis1) # numpy数组增删查改方法 # 定义列表get_col get_col [35, 36, 37,…

vector 用法

C++数组是继承C语言的,C++标准库中的vector封装了动态数组,是一个模板类(vector<int>,<>里面可以是各种类型。 定义方式: vector<元素类型> 对象名(长度); (注:vector还有个好处就是,数组定义时长度那里不能包含变量,但是vector定义时长度那里可…

2.23 Qt day4 事件机制+定时器事件+键盘事件+鼠标事件

思维导图&#xff1a; 做一个闹钟&#xff0c;在行编辑器里输入定闹钟的时间&#xff0c;时间到了就语音播报文本里的内容&#xff0c;播报五次 widget.h&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QDebug>//输出类 #include<…

网络攻防之ARP欺骗和DNS劫持实验

目录 ARP单向欺骗 ARP双向欺骗 DNS劫持 实验环境&#xff1a; 攻击主机&#xff1a;kali2023虚拟机&#xff0c;IP地址为192.168.133.141 靶机&#xff1a;Windows10虚拟机&#xff0c;IP地址为192.168.133.129 网关地址&#xff1a;192.168.133.2 (1)ARP协议介绍 在以…

maven 打包命令

Maven是基于项目对象模型(POM project object model)&#xff0c;可以通过一小段描述信息&#xff08;配置&#xff09;来管理项目的构建&#xff0c;报告和文档的软件项目管理工具。 Maven的核心功能便是合理叙述项目间的依赖关系&#xff0c;通俗点讲&#xff0c;就是通过po…

代码随想录刷题笔记-Day22

1. 修剪二叉搜索树 669. 修剪二叉搜索树https://leetcode.cn/problems/trim-a-binary-search-tree/ 给你二叉搜索树的根节点 root &#xff0c;同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[low, high]中。修剪树 不应该 改变保留…

opengles 顶点坐标变换常用的矩阵(九)

文章目录 前言一、opengles 常用的模型矩阵1. 单位矩阵2. 缩放矩阵3. 位移矩阵4. 旋转矩阵二、第三方矩阵数学库1. glm1.1 ubuntu 上安装 glm 库1.2 glm 使用实例1.2.1 生成一个沿Y轴旋转45度的4x4旋转矩阵, 代码实例如下1.2.2 生成一个将物体移到到Z轴正方向坐标为5处的4x4 vi…

万界星空科技商业开源MES

一、万界星空科技商业开源MES系统概述&#xff1a; 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、适合二开的开源MES。 1.万界星空开源MES制造执行系统的Java开源版本。 开源mes系统包括系统管理&#xff0c;车间基础数据管理&#xff0c;计…

深度学习500问——Chapter01:数学基础

文章目录 前言 1.1 向量和矩阵 1.1.1 标量、向量、矩阵、张量之间的联系 1.1.2 张量与矩阵的区别 1.1.3 矩阵和向量相乘结果 1.1.4 向量和矩阵的范数归纳 1.1.5 如何判断一个矩阵为正定 1.2 导数和偏导数 1.2.1 导数偏导计算 1.2.2 导数和偏导数有什么区别 1.3 特征值和特征向量…

什么是边缘案例测试?如何查找并确定优先级

何为边缘情况&#xff1f; 在极端条件下发生的情况被称为边缘情况&#xff0c;有时候也叫边界情况&#xff0c;在功能、回归、单元和性能测试中都会应用。如果质量保证团队知道某项功能的最大和最小负载&#xff0c;他们就能防止这些情况发生。当用户不按照程序的预期工作流程…

gma 2.0.6 (2024.02.21) 更新日志

安装 gma 2.0.6 pip install gma2.0.6网盘下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1P0nmZUPMJaPEmYgixoL2QQ?pwd1pc8 提取码&#xff1a;1pc8 注意&#xff1a;此版本没有Linux版&#xff01; 编译gma的Linux虚拟机没有时间修复&#xff0c;本期Linux版继…

Spring Cloud Gateway官方文档学习

文章目录 推荐写在前面一、熟悉Gateway基本概念与原理1、三大概念2、工作流程 二、基本使用路由断言的两种写法 三、路由断言工厂1、After路由断言工厂2、Before路由断言工厂3、Between路由断言工厂4、Cookie路由断言工厂5、Header路由断言工厂6、Host路由断言工厂7、Method路由…

静态时序分析:SDC约束命令set_drive详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 目录 指定电阻值 指定端口列表 简单使用 指定上升、下降沿 指定最大最小、条件 写在最后 本章将讨论使用set_drive命令&#xff0c;它用于对输入端口的驱动能力建模。首先需要说明的…

130 如何通过vs2017开发linux c++程序

使用VS2017开发linux下的应用程序&#xff08;C/C&#xff09;_vc_linux.exe vs2017-CSDN博客 参考上面这哥们的&#xff0c;写的很详细 前言 本文章记录如何使用VS2017进行linux应用程序的开发&#xff08;针对新手小白&#xff09;&#xff0c;VS2017能较为方便的通过SSH编辑…

公司数据迁移,服务器小文件多复制慢解决方案

企业普遍面临一个挑战&#xff1a;如何高效地处理和移动大量的小型文件。这些文件虽然单个体积不大&#xff0c;但数量庞大&#xff0c;累积起来会占据极大的存储空间&#xff0c;而且在迁移过程中&#xff0c;复制这些文件的速度往往非常缓慢。这不仅影响了企业的运营效率&…

10-pytorch-完整模型训练

b站小土堆pytorch教程学习笔记 一、从零开始构建自己的神经网络 1.模型构建 #准备数据集 import torch import torchvision from torch.utils.tensorboard import SummaryWriterfrom model import * from torch.utils.data import DataLoadertrain_datatorchvision.datasets.…