目标检测新SOTA:YOLOv9 问世,新架构让传统卷积重焕生机

在目标检测领域,YOLOv9 实现了一代更比一代强,利用新架构和方法让传统卷积在参数利用率方面胜过了深度卷积。

继 2023 年 1 月 YOLOv8 正式发布一年多以后,YOLOv9 终于来了!

我们知道,YOLO 是一种基于图像全局信息进行预测的目标检测系统。自 2015 年 Joseph Redmon、Ali Farhadi 等人提出初代模型以来,领域内的研究者们已经对 YOLO 进行了多次更新迭代,模型性能越来越强大。

此次,YOLOv9 由中国台湾 Academia Sinica、台北科技大学等机构联合开发,相关的论文《Learning What You Want to Learn Using Programmable Gradient Information 》已经放出。

图片

论文地址:https://arxiv.org/pdf/2402.13616.pdf

GitHub 地址:https://github.com/WongKinYiu/yolov9

如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。

因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。

研究者提出了 可编程梯度信息(programmable gradient information,PGI) 的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。

此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。

研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与基于深度卷积开发的 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。

对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。下图 1 展示了一些比较结果。

图片

对于新发布的 YOLOv9,曾参与开发了 YOLOv7、YOLOv4、Scaled-YOLOv4 和 DPT 的 Alexey Bochkovskiy 给予了高度评价,表示 YOLOv9 优于任何基于卷积或 transformer 的目标检测器。

图片
YOLOv9 看起来就是新的 SOTA 实时目标检测器,他自己的自定义训练教程也在路上了。

图片

图片

来源:https://twitter.com/skalskip92/status/1760717291593834648

方法介绍

可编程梯度信息(PGI)

该研究提出了一种新的辅助监督框架:可编程梯度信息(Programmable Gradient Information,PGI),如图 3(d)所示。

PGI 主要包括三个部分,即(1)主分支,(2)辅助可逆分支,(3)多级辅助信息。

  • PGI 的推理过程仅使用了主分支,因此不需要额外的推理成本;

  • 辅助可逆分支是为了处理神经网络加深带来的问题, 网络加深会造成信息瓶颈,导致损失函数无法生成可靠的梯度;

  • 多级辅助信息旨在处理深度监督带来的误差累积问题,特别是多个预测分支的架构和轻量级模型。

GELAN 网络

此外,该研究还提出了一个新的网络架构 GELAN(如下图所示),具体而言,研究者把 CSPNet、 ELAN 这两种神经网络架构结合起来,从而设计出兼顾轻量级、推理速度和准确性的通用高效层聚合网络(generalized efficient layer aggregation network ,GELAN)。研究者将最初仅使用卷积层堆叠的 ELAN 的功能泛化到可以使用任何计算块的新架构。
图片

实验结果

为了评估 YOLOv9 的性能,该研究首先将 YOLOv9 与其他从头开始训练的实时目标检测器进行了全面的比较,结果如下表 1 所示。

图片

该研究还将 ImageNet 预训练模型纳入比较中,结果如下图 5 所示。值得注意的是,使用传统卷积的 YOLOv9 在参数利用率上甚至比使用深度卷积的 YOLO MS 还要好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux信号详解

文章目录 一、Linux信号1. 信号的概念2. 信号的定义3. 系统定义的信号 二、信号产生的方式1.通过键盘产生2. 通过系统调用3. 软件条件4. 硬件异常 三、信号处理函数1. OS发送信号的实质2. 指令发送信号3. signal()4. sigaction() 四、信号屏蔽机制1. 信号处理方式2.信号集操作函…

更改QTabWidget的选项卡的位置

选项卡位置函数: QTabWidget::setTabPosition(QTabWidget::North); //默认为上面 上北下南 参数: QTabWidget::North //上面 QTabWidget::South); //下面 QTabWidget::West //左侧 QTabWidget::East)//右侧 选项卡外观函数: QTabWidget::setT…

nodejs+vue+ElementUi废品废弃资源回收系统

系统主要是以后台管理员管理为主。管理员需要先登录系统然后才可以使用本系统,管理员可以对系统用户管理、用户信息管理、回收站点管理、站点分类管理、站点分类管理、留言板管理、系统管理进行添加、查询、修改、删除,以保障废弃资源回收系统系统的正常…

Qt_纯虚函数的信号和槽

简介 在C中,纯虚函数是一个在基类中声明但没有实现的虚函数。纯虚函数的声明以 “ 0” 结尾。纯虚函数的目的是为了提供一个接口,但是不提供实现。派生类必须实现纯虚函数,否则它也会成为一个抽象类。纯虚函数可以在基类中定义,也…

python中的类与对象(1)

目录 一. 引子:模板 二. 面向过程与面向对象 (1)面向过程编程 (2)面向对象编程 三. 对象与类 (1)对象 (2)类 四. 面向对象程序设计的特点:封装&#…

【C语言】linux内核ipoib模块 - ipoib_ib_handle_rx_wc

一、中文注释 // 定义一个处理InfiniBand接收完成工作请求的函数 static void ipoib_ib_handle_rx_wc(struct net_device *dev, struct ib_wc *wc) {// 通过网络设备获取私有数据结构struct ipoib_dev_priv *priv ipoib_priv(dev);// 获取工作请求ID,并屏蔽掉接收…

探索未来:Web3如何改变我们的生活方式

在数字化的时代,技术的不断发展和创新已经成为了我们生活的常态。而在这个不断变革的过程中,区块链技术作为一种颠覆性的技术,正逐渐成为人们关注的焦点。作为区块链技术的下一代,Web3正日益崭露头角,成为了未来的发展…

橘子学es原理01之准备工作

es本身是具备很好的使用特性的,我指的是他的部署方面的,至于后期的使用和运维那还是很一眼难尽的。 我们从这一篇开始就着重于es的一些原理性的的一些探讨,当然我们也会有一些操作性的,业务性的会分为多个栏目来写。比如前面我写的…

Flutter开发进阶之Package

Flutter开发进阶之Package 通常我们在Flutter开发中需要将部分功能与整体项目隔离,一般有两种方案Plugin和Package,Application是作为主体项目,Module是作为原生项目接入Flutter模块。 当独立模块不需要与原生项目通讯只需要Plugin就可以&a…

【广度优先搜索】【网格】【割点】1263. 推箱子

作者推荐 视频算法专题 涉及知识点 广度优先搜索 网格 割点 并集查找 LeetCode:1263. 推箱子 「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。 游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或…

利用LaTex批量将eps转pdf、png转eps、eps转png、eps转svg、pdf转eps

1、eps转pdf 直接使用epstopdf命令(texlive、mitex自带)。 在cmd中进入到eps矢量图片的目录,使用下面的命令: for %f in (*.eps) do epstopdf "%f" 下面是plt保存eps代码: import matplotlib.pyplot as…

计算机网络面经-TCP的拥塞控制

写在前边 前边我们分享了网络分层协议、TCP 三次握手、TCP 四次分手。今天我们继续深入分享一下 TCP 中的拥塞控制。 对于 TCP 的拥塞控制,里边设计到很多细节,平平无奇的羊希望通过这一节能够将这部分内容串通起来,能够让你更深刻的记忆这部分内容。 思维导图 1、什么…

封装(encapsulation)

封装[encapsulation] 封装介绍封装好处封装的实现步骤(三步)入门案例封装与构造器 封装介绍 封装就是把抽象的数据[属性]和对数据的操作[方法]封装在一起,数据被保护在内部,程序的其它部分只有通过被授权的操作[方法],…

vue项目的前端工程化思路webpack(持续更新中)

写在前面:现在的前端网页功能丰富,特别是SPA(single page web application 单页应用)技术流行后,JavaScript的复杂度增加和需要一大堆依赖包,还需要解决Scss,Less……新增样式的扩展写法的编译工…

DC与DCT DCG的区别

先进工艺不再wire load model进行静态时序分析,否则综合结果与后端物理电路差距很大,因此DC综合工具也进行了多次迭代,DC工具有两种模式,包括wire load mode和Topographical Mode,也就是对应的DC Expert和DC Ultra。 …

unity hub (第一部)初学配置

1、安装Unity Hub 2、设置中文 3、安装编辑器 4、新建项目 5、新建完成后进入编辑器 6、 编辑器设置中文 editPreferencesLanguages选择中文

机器学习基础(五)监督与非监督学习的结合

导语:上一节我们详细探索非监督学习的进阶应用,详情可见: 机器学习基础(四)非监督学习的进阶探索-CSDN博客文章浏览阅读613次,点赞15次,收藏13次。非监督学习像一位探险家,挖掘未标…

电路设计(25)——4位数字频率计的multisim仿真及PCB设计

1.设计要求 使用4位数码管,显示输入信号的频率。完成功能仿真后,用AD软件,画出原理图以及PCB。 2.电路设计 输入信号的参数为: 可见,输入为168HZ,测量值为170HZ,误差在可接受的范围内。 3.PCB设…

Bluesky数据采集框架-2

访问保存的数据 到此,自然想到了"我如何访问我保存的数据?"。从bluesky的视角,那真的不是bluesky的关注,但它是一个合理的问题,因此我们将强调一个特定的场景。 注意:本章假设你正在使用databr…

AI:134-基于深度学习的社交媒体图像内容分析

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…