【实战篇】Redis单线程架构的优势与不足

请添加图片描述

前言

  • 01 Redis中的多线程
  • 02 I/O多线程
  • 03 Redis中的多进程
    • 问题
  • 04 结论

很多人都遇到过这么一道面试题:Redis是单线程还是多线程?这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程,说复杂是因为这个答案其实并不准确。

  • 难道Redis不是单线程?我们启动一个Redis实例,验证一下就知道了。Redis安装部署方式如下所示:
// 下载
wget https://download.redis.io/redis-stable.tar.gz
tar -xzvf redis-stable.tar.gz
// 编译安装
cd redis-stable
make
// 验证是否安装成功
./src/redis-server -v
Redis server v=7.2.4
  • 接下来启动Redis实例,使用命令ps查看所有线程,如下所示:
// 启动Redis实例
./src/redis-server ./redis.conf// 查看实例进程ID
ps aux | grep redis
root     385806  0.0  0.0 245472 11200 pts/2    Sl+  17:32   0:00 ./src/redis-server 127.0.0.1:6379// 查看所有线程
ps -L -p 385806PID    LWP TTY          TIME CMD
385806 385806 pts/2    00:00:00 redis-server
385806 385809 pts/2    00:00:00 bio_close_file
385806 385810 pts/2    00:00:00 bio_aof
385806 385811 pts/2    00:00:00 bio_lazy_free
385806 385812 pts/2    00:00:00 jemalloc_bg_thd
385806 385813 pts/2    00:00:00 jemalloc_bg_thd
  • 竟然有6个线程!不是说Redis是单线程吗?怎么会有这么多线程呢?

这6个线程的含义你可能不太了解,但是通过这个示例至少说明Redis并不是单线程。

01 Redis中的多线程

  • 接下来我们逐个介绍上述6个线程的作用:

  • redis-server:

主线程,用于接收并处理客户端请求。

  • jemalloc_bg_thd

jemalloc 是新一代的内存分配器,Redis底层使用他管理内存。

  • bio_xxx:

以bio前缀开始的都是异步线程,用于异步执行一些耗时任务。其中,线程bio_close_file用于异步删除文件,线程bio_aof用于异步将AOF文件刷到磁盘,线程bio_lazy_free用于异步删除数据(懒删除)。

需要说明的是,主线程是通过队列将任务分发给异步线程的,并且这一操作是需要加锁的。主线程与异步线程的关系如下图所示:

请添加图片描述

  • 主线程与异步线程
    这里我们以懒删除为例,讲解为什么要使用异步线程。Redis是一款内存数据库,支持多种数据类型,包括字符串、列表、哈希表、集合等。思考一下,删除(DEL)列表类型数据的流程是怎样的呢?第一步从数据库字典中删除该键值对,第二步遍历并删除列表中的所有元素(释放内存)。想想如果列表中的元素数目非常多呢?这一步将非常耗时。这种删除方式称为同步删除,流程如下图所示:

请添加图片描述

  • 同步删除流程图
    针对上述问题,Redis提出了懒删除(异步删除),主线程在收到删除命令(UNLINK)时,首先从数据库字典中删除该键值对,随后再将删除任务分发给异步线程bio_lazy_free,由异步线程执行第二步耗时逻辑。这时候的流程如下图所示:

请添加图片描述

  • 懒删除流程图

02 I/O多线程

难道Redis是多线程?那为什么我们老说Redis是单线程呢?这是因为读取客户端命令请求,执行命令以及向客户端返回结果都是在主线程完成的。不然的话,多线程同时操作内存数据库,并发问题如何解决?如果每次操作之前都加锁,那和单线程又有什么区别呢?

当然这一流程在Redis6.0版本也发生了改变,Redis官方指出,Redis是基于内存的键值对数据库,执行命令的过程是非常快的,读取客户端命令请求和向客户端返回结果(即网络I/O)通常会成为Redis的性能瓶颈。

因此,在Redis 6.0版本,作者加入了多线程I/O的能力,即可以开启多个I/O线程,并行读取客户端命令请求,并行向客户端返回结果。I/O多线程能力使得Redis性能提升至少一倍。

为了开启多线程I/O能力,需要先修改配置文件redis.conf:

io-threads-do-reads yes
io-threads 4
  • 这两个配置含义如下:

io-threads-do-reads:是否开启多线程I/O能力,默认为"no";

io-threads:I/O线程数目,默认为1,即只使用主线程执行网络I/O,线程数最大为128;该配置应该根据CPU核数设置,作者建议,4核CPU设置2~3个I/O线程,8核CPU设置6个I/O线程。

  • 开启多线程I/O能力之后,重新启动Redis实例,查看所有线程,结果如下:
ps -L -p 104648PID    LWP TTY          TIME CMD
104648 104648 pts/1    00:00:00 redis-server
104648 104654 pts/1    00:00:00 io_thd_1
104648 104655 pts/1    00:00:00 io_thd_2
104648 104656 pts/1    00:00:00 io_thd_3
……

由于我们设置了io-threads等于4,所以会创建4个线程用于执行I/O操作(包括主线程),上述结果符合预期。

  • 当然,只有I/O阶段才使用了多线程,处理命令请求还是单线程,毕竟多线程操作内存数据存在并发问题。

  • 最后,开启了I/O多线程之后,命令的执行流程如下图所示:

请添加图片描述

I/O多线程流程图

03 Redis中的多进程

Redis还有多进程?是的。在某些场景下,Redis也会创建多个子进程来执行一些任务。以持久化为例,Redis支持两种类型的持久化:

  • AOF(Append Only File):可以看作是命令的日志文件,Redis会将每一个写命令都追加到AOF文件。

  • RDB(Redis Database):以快照的方式存储Redis内存中的数据。命令SAVE用于手动触发RDB持久化。想想如果Redis中的数据量非常大,持久化操作必然耗时比较长,而Redis是单线程处理命令请求,那么当命令SAVE的执行时间过长时,必然会影响其他命令的执行。

命令SAVE有可能会阻塞其他请求,为此,Redis又引入了命令BGSAVE,该命令会创建一个子进程来执行持久化操作,这样就不会影响主进程执行其他请求了。

我们可以手动执行命令BGSAVE验证。首先,使用GDB跟踪Redis进程,添加断点,让子进程阻塞在持久化逻辑。如下所示:

// 查询Redis进程ID
ps aux | grep redis
root     448144  0.1  0.0 270060 11520 pts/1    tl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379// GDB跟踪进程
gdb -p 448144// 跟踪创建的子进程(默认GDB只跟踪主进程,需手动设置)
(gdb) set follow-fork-mode child
// 函数rdbSaveDb用于持久化数据快照
(gdb) b rdbSaveDb
Breakpoint 1 at 0x541a10: file rdb.c, line 1300.
(gdb) c
设置好断点之后,使用Redis客户端发送命令BGSAVE,结果如下:// 请求立即返回
127.0.0.1:6379> bgsave
Background saving started// GDB输出以下信息
[New process 452541]
Breakpoint 1, rdbSaveDb (...) at rdb.c:1300
可以看到,GDB目前跟踪的是子进程,进程ID是452541。也可以通过Linux命令 ps 查看所有进程,结果如下:ps aux | grep redis
root     448144  0.0  0.0 270060 11520 pts/1    Sl+  17:00   0:00 ./src/redis-server 127.0.0.1:6379
root     452541  0.0  0.0 270064 11412 pts/1    t+   17:19   0:00 redis-rdb-bgsave 127.0.0.1:6379

可以看到子进程的名称是redis-rdb-bgsave,也就是该进程将所有数据的快照持久化在RDB文件。

问题

问题1:为什么采用子进程而不是子线程呢?

因为RDB是将数据快照持久化存储,如果采用子线程,主线程与子线程将会共享内存数据,主线程在持久化的同时还会修改内存数据,这有可能导致数据不一致。而主进程与子进程的内存数据是完全隔离的,不存在此问题。

问题2:假设Redis内存中存储了10GB的数据,在创建子进程执行持久化操作之后,此时子进程也需要10GB的内存吗?复制10GB的内存数据,也会比较耗时吧?另外如果系统只有15GB的内存,还能执行BGSAVE命令吗?

这里有一个概念叫写时复制(copy on write),在使用系统调用fork创建子进程之后,主进程与子进程的内存数据暂时还是共享的,但是当主进程需要修改内存数据时,系统会自动将该内存块复制一份,以此实现内存数据的隔离。

请添加图片描述

04 结论

作者介绍
李乐:好未来Golang开发专家、西安电子科技大学硕士,曾就职于滴滴,乐于钻研技术与源码,合著有《高效使用Redis:一书学透数据存储与高可用集群》《Redis5设计与源码分析》《Nginx底层设计与源码分析》。

《高效使用Redis:一书学透数据存储与高可用集群》

请添加图片描述

推荐语:深入Redis数据结构与底层实现,攻克Redis数据存储与集群管理难题。

Redis的进程模型/线程模型还是比较复杂的,这里也只是简单介绍了部分场景下的多线程以及多进程,其他场景下的多线程、多进程还有待读者自己研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/699727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

易宝OA DownloadFile 任意文件读取漏洞复现

0x01 产品简介 易宝OA系统是一种专门为企业和机构的日常办公工作提供服务的综合性软件平台,具有信息管理、 流程管理 、知识管理(档案和业务管理)、协同办公等多种功能。 0x02 漏洞概述 易宝OA系统DownloadFile接口处存在任意文件读取漏洞,未授权的攻击者可以利用此漏洞…

java集合--List集合的基本用法

一、ArrayList集合 1.ArrayList集合的特点 2.ArrayList集合的一些方法 ①.add(Object element) 向列表的尾部添加指定的元素。 ②.size() 返回列表中的元素个数。 ③.get(int index) 返回列表中指定位置的元素,index从0开始。 public class Test {public static …

【Docker】构建pytest-playwright镜像并验证

Dockerfile FROM ubuntu LABEL maintainer "langhuang521l63.com" ENV TZAsia/Shanghai #设置时区 #安装python3依赖与下载安装包 RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone \&& apt update \&&…

大模型+影像:智能手机“上春山”

这个春节假期,一首《上春山》火了。吃瓜群众热热闹闹学了一个假期的“春山学”,了解了抢占C位的各种技巧。 假期过去,开工大吉,手机行业开始抢占今年的C位。那么问题来了,今年智能手机最大的机会点在哪里?答…

C++ string常见用法 + 练手习题

部分内容摘抄自http://t.csdnimg.cn/BM0jO 目录 温故:C库函数中和字符串有联系的函数知新:C string常见用法string的初始化 1.常见初始化方式string对象的操作 1.用cin获取键盘输入的值 2.用getline读取一整行 3.string对…

布隆过滤器笔记

课程地址 布隆过滤器由一个很长的二进制向量和一系列哈希函数组成 特性:布隆过滤器可以告诉我们 “某样东西一定不存在或者可能存在”,也就是说布隆过滤器说这个数不存在则一定不存在,布隆过滤器说这个数存在可能不存在。这个特性能很好地被…

如何避免软件测试的遗漏或重复?

在实际软件测试中,经常遇到遗漏测试点,测试不充分;或者重复测试,造成资源浪费的情况。因此如何避免软件测试遗漏或重复,非常重要。 1、实施过程 首先,通过梳理某个领域的相关项目,分析相关业务规…

【鸿蒙 HarmonyOS 4.0】UIAbility、页面及组件的生命周期

一、背景 主要梳理下鸿蒙系统开发中常用的生命周期 二、UIAbility组件 UIAbility组件是一种包含UI界面的应用组件,主要用于和用户交互。 UIAbility组件是系统调度的基本单元,为应用提供绘制界面的窗口;一个UIAbility组件中可以通过多个页…

STL用法

参考原文:C中STL用法超详细总结(收藏级) - 知乎 1 什么是STL? STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C程序库。它被容纳于C标准程…

【Python笔记-设计模式】前端控制器模式

一、说明 常作为MVC(Model-View-Controller)模式的一部分,用来处理用户请求并将其分发给相应的处理程序(即路由匹配)。 (一) 解决问题 将请求的处理流程集中管理,统一处理所有的请求 (二) 使用场景 需…

HTML5技术实现的小钢琴

HTML5技术实现的小钢琴 用HTML5实现的小钢琴&#xff0c;按下钢琴键上的相应字母用或用鼠标点击钢琴键发声&#xff0c;源码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"v…

数据库管理-第154期 Oracle Vector DB AI-06(20240223)

数据库管理154期 2024-02-23 数据库管理-第154期 Oracle Vector DB & AI-06&#xff08;20240223&#xff09;1 环境准备创建表空间及用户TNSNAME配置 2 Oracle Vector的DML操作创建示例表插入基础数据DML操作UPDATE操作DELETE操作 3 多Vector列表4 固定维度的向量操作5 不…

【MATLAB】 EWT信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 展示出图效果 1 EWT分解算法 EWT分解算法是一种基于小波变换的信号分解算法&#xff0c;它可以将信号分解为一系列具有不同频率特性的小波分量。该算法的基本思想是将信号分解为多个不同尺度的小波分量&#xff0c;并对…

第十二天-ppt的操作

目录 创建ppt文档 安装 使用 段落的使用 段落添加数据 段落中定义多个段落 自定义段落 ppt插入表表格 PPT插入图片 读取ppt 读取ppt整体对象 ​编辑 获取ppt文本 获取表格内容 创建ppt文档 安装 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple python…

day40打卡

day40打卡 343. 整数拆分 状态表示 ​ dp[i] 表示将正整数i拆分成至少两个正整数的和之后&#xff0c;这些正整数的最大乘积 状态转移方程 ​ i > 2 时&#xff0c;对正整数i拆出的第一个正整数是j&#xff0c;则有&#xff1a; 将i拆分为 j 和 i-j&#xff0c;且 i-j…

云原生时代,Nginx是否还是很重要,还是说云原生里的网关能把Nginx消灭掉?

在云原生时代&#xff0c;Nginx 仍然是至关重要的&#xff0c;尽管它可能不再是在所有场景下的默认选择。云原生应用程序通常是由多个微服务组成的&#xff0c;这些微服务需要快速、可靠且安全地进行通信。Nginx 作为一款高性能的 web 服务器和反向代理&#xff0c;长期以来一直…

文心一言4.0 VS ChatGPT4.0 图片生成能力大比拼!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

单片机tsm32城市环境污染监测与实现

国内经济增速的持续保持不但加快了城市化建设的步伐&#xff0c;同时也使得更多的人口聚集到大城市中求发展&#xff0c;大量的人口对衣食住行等方面的需求使得这些城市环境的污染问题逐渐加剧。当前各级政府虽然对城市环境污染问题越来越重视&#xff0c;但是因缺乏监测手段而…

【VRTK】【Unity】【VR开发】使用注意事项-Simulator没反应

【背景】 建立一个基本的VRTK项目后&#xff0c;用Simulator Rig模拟运行&#xff0c;移动鼠标后发现Simulator Rig没有任何反应。 【分析】 Console中的报错信息类似于没有启用Legacy unity input package&#xff0c;Legacy的意思是经典的&#xff0c;所以应该是指没有在p…

详解AT24CXX驱动开发(linux platform tree - i2c应用)

目录 概述 1 认识AT24Cxx 1.1 AT24CXX的特性 1.2 AT24CXX描述 1.2.1 引脚 1.2.2 容量描述 1.2.3 设备地址 1.3 操作时序 1.3.1 写单个字节时序 1.3.2 写page字节时序 1.3.3 读取当前数据时序 1.3.4 随机读取数据 1.3.5 连续读取多个数据 2 驱动开发 2.1 硬件接口…