【动态规划】【前缀和】【推荐】2463. 最小移动总距离

作者推荐

【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子

本文涉及知识点

动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

2463. 最小移动总距离

X 轴上有一些机器人和工厂。给你一个整数数组 robot ,其中 robot[i] 是第 i 个机器人的位置。再给你一个二维整数数组 factory ,其中 factory[j] = [positionj, limitj] ,表示第 j 个工厂的位置在 positionj ,且第 j 个工厂最多可以修理 limitj 个机器人。
每个机器人所在的位置 互不相同 。每个工厂所在的位置也 互不相同 。注意一个机器人可能一开始跟一个工厂在 相同的位置 。
所有机器人一开始都是坏的,他们会沿着设定的方向一直移动。设定的方向要么是 X 轴的正方向,要么是 X 轴的负方向。当一个机器人经过一个没达到上限的工厂时,这个工厂会维修这个机器人,且机器人停止移动。
任何时刻,你都可以设置 部分 机器人的移动方向。你的目标是最小化所有机器人总的移动距离。
请你返回所有机器人移动的最小总距离。测试数据保证所有机器人都可以被维修。
注意:
所有机器人移动速度相同。
如果两个机器人移动方向相同,它们永远不会碰撞。
如果两个机器人迎面相遇,它们也不会碰撞,它们彼此之间会擦肩而过。
如果一个机器人经过了一个已经达到上限的工厂,机器人会当作工厂不存在,继续移动。
机器人从位置 x 到位置 y 的移动距离为 |y - x| 。
示例 1:
输入:robot = [0,4,6], factory = [[2,2],[6,2]]
输出:4
解释:如上图所示:

  • 第一个机器人从位置 0 沿着正方向移动,在第一个工厂处维修。
  • 第二个机器人从位置 4 沿着负方向移动,在第一个工厂处维修。
  • 第三个机器人在位置 6 被第二个工厂维修,它不需要移动。
    第一个工厂的维修上限是 2 ,它维修了 2 个机器人。
    第二个工厂的维修上限是 2 ,它维修了 1 个机器人。
    总移动距离是 |2 - 0| + |2 - 4| + |6 - 6| = 4 。没有办法得到比 4 更少的总移动距离。
    示例 2:
    输入:robot = [1,-1], factory = [[-2,1],[2,1]]
    输出:2
    解释:如上图所示:
  • 第一个机器人从位置 1 沿着正方向移动,在第二个工厂处维修。
  • 第二个机器人在位置 -1 沿着负方向移动,在第一个工厂处维修。
    第一个工厂的维修上限是 1 ,它维修了 1 个机器人。
    第二个工厂的维修上限是 1 ,它维修了 1 个机器人。
    总移动距离是 |2 - 1| + |(-2) - (-1)| = 2 。没有办法得到比 2 更少的总移动距离。
    提示:
    1 <= robot.length, factory.length <= 100
    factory[j].length == 2
    -109 <= robot[i], positionj <= 109
    0 <= limitj <= robot.length
    测试数据保证所有机器人都可以被维修。

动态规划

原理

性质一:r1和r2是两个机器人位置,且r1 < r2。令f1和r2是两个工厂位置,且f1 < f2。 选择一:f1修r1,f2修r2。选择二:f1修r2,f2修f1。方式一不劣于方式二
下面分情况证明:
一,r2 <= f1。两个机器人都在左边,两种选择结果一样。可以这样理解,两个机器人都进f1,然后其中一个去f2。
二,r1 >= f2。两个机器人都在右边。两种选择结果一样。可以这样理解:两个机器人都近f2,然后其中一个去f1。
三,f1 < r1 < r2 < f2。绿线是选择一,红线是选择二。在这里插入图片描述
四,r1 < f1 f1 < r2 < f2 。
在这里插入图片描述
五,r1 < f1 r2 > f2。

在这里插入图片描述
六,f1<r1<f2 r2<r2。和情况四对称。

动态规划的状态表示

dp[i][j] 前i个工厂修理前j个机器人的最小移动距离。

动态规划的转移方程

最左边的i个工厂,修理了j个机器人,最后一个工厂修理了k个机器人。根据性质一,则这k个机器人一定是j个机器人中最右边的。
dp[i][j] = m i n k : 0 m i n ( l i m i t [ i ] , j ) \Large min_{k:0}^{min(limit[i],j)} mink:0min(limit[i],j) (pre[i-1][j-k])+移动k个机器人的总距离
左移的机器人和右移的机器人,分别利用前缀和计算总距离。先对机器人和工厂的位置排序,坐标小于等于工厂坐标机器人右移:
∑ 移动的机器人 ( 工厂到原点距离 − 机器人到原点的距离 ) → \sum _{移动的机器人} (工厂到原点距离-机器人到原点的距离) \rightarrow 移动的机器人(工厂到原点距离机器人到原点的距离) 工厂到原点的距离 ⋆ 移动的机器人数 − ∑ 移动的机器人 ( 机器人到原点的距离 ) 工厂到原点的距离\star 移动的机器人数 - \sum _{移动的机器人}(机器人到原点的距离) 工厂到原点的距离移动的机器人数移动的机器人(机器人到原点的距离)

动态规划的初始值

dp[0][0]=0 其它3e11

动态规划的填表顺序

从左到右计算后置状态。

返回值

dp.back().back()

注意
前缀和记录的是相对位置:坐标是负数也可以。

代码

核心代码

template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{*seft = min(*seft,(ELE) other);
}template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{*seft = max(*seft, other);
}template<class T = long long >
class CPreSum
{
public:CPreSum(const vector<int>& nums){m_data.push_back(0);for (int i = 0; i < nums.size(); i++){m_data.push_back(m_data[i] + nums[i]);}}template<class _PR>CPreSum(int iSize, _PR pr){m_data.push_back(0);for (int i = 0; i < iSize; i++){m_data.push_back(m_data[i] + pr(i));}}T Sum(int left, int rightExclu)const{return m_data[rightExclu] - m_data[left];}
protected:vector<T> m_data;
};class Solution {
public:long long minimumTotalDistance(vector<int>& robot, vector<vector<int>>& factory) {sort(robot.begin(), robot.end());sort(factory.begin(), factory.end(), [&factory](auto& v1,auto& v2) {return v1[0] <v2[0]; });int n1 = factory.size(), n2 = robot.size();vector<int> vLeftCount;for (int i = 0, j = 0; i < n1; i++){while ((j < n2) && (robot[j] <= factory[i][0])){j++;}vLeftCount.emplace_back(j);}CPreSum preSum(robot);vector<vector<long long>> dp(n1 + 1, vector<long long>(n2 + 1,3e11));dp[0][0] = 0;for (int i = 1; i <= n1; i++){dp[i][0] = 0;for (int j = 1; j <= n2; j++){for (int k = 0; k <= min(j, factory[i - 1][1]); k++){const long long iLefttMove = min(k,max(0, j - vLeftCount[i - 1]));const long long llRightMove = k - iLefttMove;long long llMove = preSum.Sum(j - iLefttMove, j) - iLefttMove * factory[i - 1][0];//左移llMove += factory[i - 1][0] * llRightMove - preSum.Sum(j-k,j-k+llRightMove);MinSelf(&dp[i][j], dp[i - 1][j - k] + llMove);}}}return dp.back().back();}	
};

核心代码

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<int> robot;vector<vector<int>> factory;{Solution sln;robot = { 0,4,6 }, factory = { {2,2},{6,2} };auto res = sln.minimumTotalDistance(robot,factory);Assert(res,4LL);}{Solution sln;robot = { 1,-1 }, factory = { {-2,1},{2,1} };auto res = sln.minimumTotalDistance(robot, factory);Assert(res, 2LL);}{Solution sln;robot = { 0,4,6 }, factory = { {-2,2},{-6,2} };auto res = sln.minimumTotalDistance(robot, factory);Assert(res, 20LL);}}

2023年2月

class Solution {
public:
long long minimumTotalDistance(vector& robot, vector<vector>& factory) {
m_c = robot.size();
std::sort(robot.begin(), robot.end());
std::sort(factory.begin(), factory.end(), [](const vector& v0, const vector& v1)
{
return v0[0] < v1[0];
});
vector vPre(m_c + 1, m_llNotMay);
vPre[0] = 0;
for (const auto& v : factory)
{
vector dp = vPre;
for (int i = 0; i < m_c; i++)
{
if (m_llNotMay == vPre[i])
{
continue;
}
long long llMove = 0;
for (int j = 1; j <= v[1]; j++)
{
if (i + j > m_c)
{
break;
}
llMove += abs(v[0] - robot[i + j - 1]);
dp[i + j] = min(dp[i + j], vPre[i] + llMove);
}
}
vPre.swap(dp);
}
return vPre[m_c];
}
int m_c;
const long long m_llNotMay = ((long long)INT_MAX) * 1000;
};

2023年8月

class Solution {
public:
long long minimumTotalDistance(vector& robot, vector<vector>& factory) {
m_c = robot.size();
std::sort(robot.begin(), robot.end());
std::sort(factory.begin(), factory.end(), [](const vector& v1, const vector& v2)
{return v1[0] < v2[0]; });
vector vPre(m_c + 1, m_llNotMay);//vPre[i] 当前工厂及更早工厂修理i个机器人的最小移动距离
vPre[0] = 0;
for (const auto& v : factory)
{
vector dp = vPre;//本工厂不修理机器人
for (int pre = 0; pre < m_c; pre++)
{
long long llMove = 0;
for (int iDo = 1; iDo <= v[1]; iDo++)
{
const int next = pre + iDo;
if (next > m_c)
{
break;
}
llMove += abs(robot[next-1] - v[0]);
dp[next] = min(dp[next], vPre[pre] + llMove);
}
}
vPre.swap(dp);
}
return vPre.back();
}
int m_c;
const long long m_llNotMay = 1e12;
};

2023年9月

class Solution {
public:
long long minimumTotalDistance(vector& robot, vector<vector>& factory) {
sort(robot.begin(), robot.end());
sort(factory.begin(), factory.end(), [](const vector& v1, const vector& v2)
{
return v1[0] < v2[0];
});
long long llMinPos = min(*robot.begin(),(*factory.begin())[0]);
vector vPreSumDis(1);
for (const auto& n : robot)
{
vPreSumDis.emplace_back(vPreSumDis.back() + n- llMinPos);
}
vector pre(1);//pre[i] 当前站点之前的站点修改i个机器人的最小成本
int iRight = 0;//当前工厂右边的第一个机器人
for (int i = 0; i < factory.size(); i++)
{
const int iFactoryPos = factory[i][0];
for (; (iRight < robot.size()) && (robot[iRight] <= iFactoryPos); iRight++);
const int iSize = min(robot.size(), pre.size()-1 + factory[i][1]);
vector dp(iSize+1,1e12);
for (int j = 0; j<pre.size(); j++)
{
for (int k = 0; (k <= factory[i][1])&&(j+k <= robot.size()); k++)
{//[j,iRight)个机器上右移[iRight,j+k)个机器人左右移
const long long llMove = MoveRight(j, min(j + k, iRight), iFactoryPos, llMinPos, vPreSumDis)+
MoveLeft(max(j,iRight),j+k, iFactoryPos, llMinPos, vPreSumDis);
dp[j + k] = min(dp[j + k], llMove+pre[j]);
}
}
pre.swap(dp);
}
return pre.back();
}
long long MoveRight(int left, int right,const int iFactoryPos,const long long llMinPos, const vector& vPreSumDis)
{
if (right <= left )
{
return 0;
}
return (long long)(right - left) * (iFactoryPos - llMinPos) - (vPreSumDis[right] - vPreSumDis[left]);
}
long long MoveLeft(int left, int right, const int iFactoryPos, const long long llMinPos, const vector& vPreSumDis)
{
if (right <= left)
{
return 0;
}
return vPreSumDis[right] - vPreSumDis[left] - (long long)(right - left) * (iFactoryPos - llMinPos);
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/699523.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【统计分析数学模型】判别分析(四):机器学习分类算法

【统计分析数学模型】判别分析&#xff08;四&#xff09;&#xff1a;机器学习分类算法 一、机器学习分类算法1. 交叉验证方法2. 案例数据集3. 数据标准化 二、决策树模型1. 基本原理2. 计算步骤3. R语言实现 三、K最邻近分类1. 基本原理2. K值的选择3. R语言实现 四、支持向量…

5分钟JavaScript快速入门

目录 一.JavaScript基础语法 二.JavaScript的引入方式 三.JavaScript中的数组 四.BOM对象集合 五.DOM对象集合 六.事件监听 使用addEventListener()方法添加事件监听器 使用onX属性直接指定事件处理函数 使用removeEventListener()方法移除事件监听器 一.JavaScript基础…

投屏软件Airserver优惠码来了,使用能减10元(有图有真相)

Airserver是一款非常实用的手机投屏到电脑软件。AirServer for Mac是一款能够通过本地网络将音频、照片、视频以及支持AIrPlay功能的第三方App&#xff0c;从 iOS 设备无线传送到 Mac 电脑的屏幕上&#xff0c;把Mac变成一个AirPlay终端的实用工具。 Airserver中文官网地址&…

【算法与数据结构】回溯算法、贪心算法、动态规划、图论(笔记三)

文章目录 七、回溯算法八、贪心算法九、动态规划9.1 背包问题9.2 01背包9.3 完全背包9.4 多重背包 十、图论10.1 深度优先搜索10.2 广度优先搜索10.3 并查集 最近博主学习了算法与数据结构的一些视频&#xff0c;在这个文章做一些笔记和心得&#xff0c;本篇文章就写了一些基础…

【C++】类和对象---友元,内部类,匿名对象详解

目录 友元 友元函数 友元类 内部类 匿名对象 ⭐友元 友元提供了一种突破封装的方式&#xff0c;有时提供了便利。但是友元会增加耦合度&#xff0c;破坏了封装&#xff0c;所以 友元不宜多用。 友元分为&#xff1a;友元函数和友元类。 ⚡友元函数 先看一个问题&#x…

使用 yarn 的时候,遇到 Error [ERR_REQUIRE_ESM]: require() of ES Module 怎么解决?

晚上回到家&#xff0c;我打开自己的项目&#xff0c;执行&#xff1a; cd HexoPress git pull --rebase yarn install yarn dev拉取在公司 push 的代码&#xff0c;然后更新依赖&#xff0c;最后开始今晚的开发时候&#xff0c;意外发生了&#xff0c;竟然报错了&#xff0c;…

Python流程控制有知道的吗?

流程控制是编程的核心概念之一&#xff0c;Python也不例外。在Python中&#xff0c;程序的流程控制结构主要包括顺序结构、选择结构和循环结构。这些结构让程序员能够更好地组织代码&#xff0c;使其按照特定的逻辑执行。 1.顺序结构 顺序结构是Python中最简单的流程控制结构&…

Android相机调用-libusbCamera【外接摄像头】【USB摄像头】 【多摄像头预览】

有的自定义系统&#xff0c;对于自己外接的USB摄像头&#xff0c;android原生的camera和camera2都无法打开&#xff0c;CameraX也用不了。这时候就要用libusbCamera&#xff0c;这个库可以打开摄像头&#xff0c;还可以多摄像头同时预览。本文主要是同时打开3个USB摄像头的项目…

Spring Boot应用集成Actuator组件以后怎么自定义端点暴露信息

一、 前言 在平时业务开发中&#xff0c;我们往往会在spring Boot项目中集成Actuator组件进行系统监控&#xff0c;虽然Actuator组件暴露的端点信息已经足够丰富了&#xff0c;但是特殊场景下&#xff0c;我们也需要自己暴露端点信息&#xff0c;此时应该怎么操作呢&#xff1…

爬虫知识--03

数据存mysql import requests from bs4 import BeautifulSoup import pymysql# 链接数据库pymysql conn pymysql.connect(userroot,password"JIAJIA",host127.0.0.1,databasecnblogs,port3306, ) cursor conn.cursor() cursor conn.cursor()# 爬数据 res request…

如何解决Nginx启动出现闪退问题?

哈喽&#xff0c;大家好&#xff0c;我是小浪。那么大家首次在启动nginx的时候&#xff0c;绝大部分同学会出现以下情况&#xff0c;就是我们双击nginx.exe文件之后&#xff0c;屏幕闪退一下就没了&#xff0c;然后我们访问localhost:8080提示404. 那么出现这种情况其实是我们…

NestJS入门7:增加异常过滤器

前文参考&#xff1a; NestJS入门1 NestJS入门2&#xff1a;创建模块 NestJS入门3&#xff1a;不同请求方式前后端写法 NestJS入门4&#xff1a;MySQL typeorm 增删改查 NestJS入门5&#xff1a;加入Swagger NestJS入门6&#xff1a;日志中间件 本文代码基于上一篇文章《…

深度学习基础(二)卷积神经网络(CNN)

之前的章节我们初步介绍了深度学习相关基础知识和训练神经网络&#xff1a; 深度学习基础&#xff08;一&#xff09;神经网络基本原理-CSDN博客文章浏览阅读924次&#xff0c;点赞13次&#xff0c;收藏19次。在如今的科技浪潮中&#xff0c;神经网络作为人工智能的核心技术之…

关于git子模块实践(一)

背景 在日常项目开发中&#xff0c;随着项目的迭代&#xff0c;不可避免的是主项目会引入到很多三方库&#xff0c;或者自研的一些模块。有一种场景&#xff0c;就是这些模块&#xff0c;是随着开发而进行迭代&#xff0c;且多个项目公用的&#xff0c;这种情况&#xff0c;在…

第3.3章:StarRocks数据导入——Stream Load

一、概述 Stream Load是StarRocks最为核心的导入方式&#xff0c;用户通过发送HTTP请求将本地文件或数据流导入至StarRocks中&#xff0c;其本身不依赖其他组件。 Stream Load支持csv和json两种数据文件格式&#xff0c;适用于数据文件数量较少且单个文件的大小不超过10GB 的场…

v-rep插件

v-rep官网插件汉化教程 官网教程 插件是什么 插件本质上就是遵循一定规范的API编写出来的程序&#xff0c;在v-rep中最终需要编译为动态库。 linux下是libsimXXXX.so&#xff1b; 其中XXXX是插件的名称。 请至少使用4个字符&#xff0c;并且不要使用下划线&#xff0c;因为…

kafka生产者2

1.数据可靠 • 0&#xff1a;生产者发送过来的数据&#xff0c;不需要等数据落盘应答。 风险&#xff1a;leader挂了之后&#xff0c;follower还没有收到消息。。。。 • 1&#xff1a;生产者发送过来的数据&#xff0c;Leader收到数据后应答。 风险&#xff1a;leader应答…

【机器学习】数据清洗——基于Numpy库的方法删除重复点

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

PostgreSQL索引篇 | BTree

B-Tree索引 &#xff08;本文为《PostgreSQL数据库内核分析》一书的总结笔记&#xff0c;需要电子版的可私信我&#xff09; B树特点&#xff1a; 非叶子节点含一个或多个关键字值和子节点指针&#xff0c;不指向实际数据的存储位置所有关键字都是叶子节点&#xff0c;每个叶…

Python运算符你学会了吗?

1.算术运算符 &#xff08;加&#xff09;、-&#xff08;减&#xff09;、*&#xff08;乘&#xff09;、/&#xff08;除&#xff09;、%&#xff08;取余&#xff09;、//&#xff08;取整&#xff09;、**&#xff08;求幂&#xff09; a 12 b 3 c 7print(a b) # 15 …