搭建PyTorch神经网络进行气温预测

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
features = pd.read_csv('temps.csv')#看看数据长什么样子
features.head()

数据表中

  • year,moth,day,week分别表示的具体的时间
  • temp_2:前天的最高温度值
  • temp_1:昨天的最高温度值
  • average:在历史中,每年这一天的平均最高温度值
  • actual:这就是我们的标签值了,当天的真实最高温度
  • friend:这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了
  • # 处理时间数据
    import datetime# 分别得到年,月,日
    years = features['year']
    months = features['month']
    days = features['day']# datetime格式
    dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
    dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
    # 准备画图
    # 指定默认风格
    plt.style.use('fivethirtyeight')# 设置布局
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
    fig.autofmt_xdate(rotation = 45)# 标签值
    ax1.plot(dates, features['actual'])
    ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')# 昨天
    ax2.plot(dates, features['temp_1'])
    ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')# 前天
    ax3.plot(dates, features['temp_2'])
    ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')# 我的逗逼朋友
    ax4.plot(dates, features['friend'])
    ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')plt.tight_layout(pad=2)

  • # 独热编码
    features = pd.get_dummies(features)
    features.head(5)
    # 标签
    labels = np.array(features['actual'])# 在特征中去掉标签
    features= features.drop('actual', axis = 1)# 名字单独保存一下,以备后患
    feature_list = list(features.columns)# 转换成合适的格式
    features = np.array(features)
    from sklearn import preprocessing
    input_features = preprocessing.StandardScaler().fit_transform(features)

    构建网络模型

  • x = torch.tensor(input_features, dtype = float)y = torch.tensor(labels, dtype = float)# 权重参数初始化
    weights = torch.randn((14, 128), dtype = float, requires_grad = True) 
    biases = torch.randn(128, dtype = float, requires_grad = True) 
    weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) 
    biases2 = torch.randn(1, dtype = float, requires_grad = True) learning_rate = 0.001 
    losses = []for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 加入激活函数hidden = torch.relu(hidden)# 预测结果predictions = hidden.mm(weights2) + biases2# 通计算损失loss = torch.mean((predictions - y) ** 2) losses.append(loss.data.numpy())# 打印损失值if i % 100 == 0:print('loss:', loss)#返向传播计算loss.backward()#更新参数weights.data.add_(- learning_rate * weights.grad.data)  biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2.grad.data)biases2.data.add_(- learning_rate * biases2.grad.data)# 每次迭代都得记得清空weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()

  • 更简单的构建网络模型

    input_size = input_features.shape[1]
    hidden_size = 128
    output_size = 1
    batch_size = 16
    my_nn = torch.nn.Sequential(torch.nn.Linear(input_size, hidden_size),torch.nn.Sigmoid(),torch.nn.Linear(hidden_size, output_size),
    )
    cost = torch.nn.MSELoss(reduction='mean')
    optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
    # 训练网络
    losses = []
    for i in range(1000):batch_loss = []# MINI-Batch方法来进行训练for start in range(0, len(input_features), batch_size):end = start + batch_size if start + batch_size < len(input_features) else len(input_features)xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)prediction = my_nn(xx)loss = cost(prediction, yy)optimizer.zero_grad()loss.backward(retain_graph=True)optimizer.step()batch_loss.append(loss.data.numpy())# 打印损失if i % 100==0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))

    预测训练结果

    x = torch.tensor(input_features, dtype = torch.float)
    predict = my_nn(x).data.numpy()# 转换日期格式
    dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
    dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
    true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
    months = features[:, feature_list.index('month')]
    days = features[:, feature_list.index('day')]
    years = features[:, feature_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) # 真实值
    plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
    plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
    plt.xticks(rotation = '60'); 
    plt.legend()# 图名
    plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

  • https://gitee.com/code-wenjiahao/neural-network-practical-classification-and-regression-tasks

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/69798.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode:1941. 检查是否所有字符出现次数相同(python3解法)

难度&#xff1a;简单 给你一个字符串 s &#xff0c;如果 s 是一个 好 字符串&#xff0c;请你返回 true &#xff0c;否则请返回 false 。 如果 s 中出现过的 所有 字符的出现次数 相同 &#xff0c;那么我们称字符串 s 是 好 字符串。 示例 1&#xff1a; 输入&#xff1a;s…

vue中实现签名画板

特意封装成了一个组件&#xff0c;签名之后会生成一张图片 signBoard.vue <template><el-drawer title"签名" :visible.sync"isShowBoard" append-to-body :show-close"false" :before-close"closeBoard" size"50%&quo…

使用redis实现队列功能

使用redis实现队列功能 操作方法描述LPUSHLong lPush(String key, String… values)将一个或多个值 value 插入到列表 key 的表头&#xff0c;返回插入后列表中value的数量&#xff0c;若key不存在&#xff0c;会创建一个新的列表并执行 LPUSH 操作RPOPLPUSHString rPopLPush(S…

Modbus协议详解2:通信方式、地址规则、主从机通信状态

首先我们要清楚&#xff1a;Modbus是一种串行链路上的主从协议&#xff0c;在通信线路上只能有一个主机存在&#xff0c;不会有多主机存在的情况。虽然主机只有一个&#xff0c;但是从机是可以有多个的。 Modbus的通信过程都是由主机发起的&#xff0c;从机在接收到主机的请求后…

docker笔记8:Docker网络

1.是什么 1.1 docker不启动&#xff0c;默认网络情况 ens33 lo virbr0 在CentOS7的安装过程中如果有选择相关虚拟化的的服务安装系统后&#xff0c;启动网卡时会发现有一个以网桥连接的私网地址的virbr0网卡(virbr0网卡&#xff1a;它还有一个固定的默认IP地址192.168.122…

vr智慧党建主题展厅赋予企业数字化内涵

现如今&#xff0c;VR全景技术的发展让我们动动手指就能在线上参观博物馆、纪念馆&#xff0c;不仅不用受时间和空间的限制&#xff0c;还能拥有身临其境般的体验&#xff0c;使得我们足不出户就能随时随地学习、传承红色文化。 很多党建展厅都是比较传统的&#xff0c;没有运用…

C++(QT)画图行车

通过鼠标在窗口上点击形成多个点的连线&#xff0c;绘制一辆汽车沿着绘制的连线轨迹前进。要求连线点数大于20.可以通过清除按钮清除已经绘制的连线&#xff0c;并可以重新绘制一条轨迹连线。当车辆行驶到轨迹终点时&#xff0c;自动停止。&#xff08;汽车实在可用方块代替&am…

go锁--读写锁

每个锁分为读锁和写锁&#xff0c;写锁互斥 没有加写锁时&#xff0c;多个协程都可以加读锁 加了写锁时&#xff0c;无法加读锁&#xff0c;读协程排队等待 加了读锁&#xff0c;写锁排队等待 Mutex用来写协程之间互斥等待 读协程使用readerSem等待写锁的释放 写协程使用writer…

文末送书!谈谈原型模式在JAVA实战开发中的应用(附源码+面试题)

作者主页&#xff1a;Designer 小郑 作者简介&#xff1a;3年JAVA全栈开发经验&#xff0c;专注JAVA技术、系统定制、远程指导&#xff0c;致力于企业数字化转型&#xff0c;CSDN博客专家&#xff0c;蓝桥云课认证讲师。 本文讲解了 Java 设计模式中的原型模式&#xff0c;并给…

Vue + Element UI 前端篇(六):更换皮肤主题

自定义主题 命令行主题工具 1.安装主题工具 首先安装「主题生成工具」&#xff0c;可以全局安装或者安装在当前项目下&#xff0c;推荐安装在项目里&#xff0c;方便别人 clone 项目时能直接安装依赖并启动。 yarn add element-theme --dev 2.安装chalk主题 安装白垩主题…

用对工具,你的全渠道电子商务业务就成功了一半

希望将全渠道电子商务纳入您的业务战略&#xff0c;但不确定从哪里开始&#xff1f;我们为您提供保障。这篇文章将指导您了解全渠道商务的基础知识&#xff0c;以及它与多渠道方法的区别&#xff0c;还将探讨利用全渠道方法的众多好处&#xff0c;并讨论企业如何通过全渠道客户…

C#,《小白学程序》第十三课:阶乘(Factorial)的计算方法与代码

1 文本格式 /// <summary> /// 阶乘的非递归算法 /// </summary> /// <param name"a"></param> /// <returns></returns> private int Factorial_Original(int a) { int r 1; for (int i a; i > 1; i--) { …

Anaconda虚拟环境下导入opencv

文章目录 解决方法测试 解决方法 1、根据自己虚拟环境对于的python版本与电脑对应的位长选择具体的版本&#xff0c;例如python3.9选择cp39&#xff0c;64位电脑选择64 下载地址&#xff1a;资源地址 若是不确定自己虚拟环境对应的python版本&#xff0c;可以输入下列命令&…

【100天精通Python】Day56:Python 数据分析_Pandas数据清洗和处理

目录 数据清洗和处理 1.处理缺失值 1.1 删除缺失值&#xff1a; 1.2 填充缺失值&#xff1a; 1.3 插值&#xff1a; 2 数据类型转换 2.1 数据类型转换 2.2 日期和时间的转换&#xff1a; 2.3 分类数据的转换&#xff1a; 2.4 自定义数据类型的转换&#xff1a; 3 数…

Activiti基础入门

文章目录 Activiti项目搭建引用依赖项Activiti服务初始化数据库配置配置文件测试demo Activiti功能服务RepositoryService&#xff1a;RuntimeService&#xff1a;TaskService&#xff1a;HistoryService&#xff1a;ManagementService&#xff1a;DynamicBpmnService&#xff…

基于Hugo 搭建个人博客网站

目录 1.环境搭建 2.生成博客 3.设置主题 4.将博客部署到github上 1.环境搭建 1&#xff09;安装Homebrew brew是一个在 macOS 操作系统上用于管理软件包的包管理器。类似于centos下的yum或者ubuntu下的apt&#xff0c;它允许用户通过命令行安装、更新和管理各种软件工具、…

医学案例|线性回归

一、案例介绍 某医师预研究糖尿病患者的总胆固醇和甘油三酯对空腹血糖的影响&#xff0c;某研究者调查40名糖尿病患者的总胆固醇、甘油三酯和空腹血糖的测量值如下&#xff0c;试根据上述研究问题作统计分析。 二、问题分析 本案例想要研究一些变量&#xff08;总胆固醇和甘油…

PostgreSQL问题记录:column “...“ does not exist

在PostgreSQL中&#xff0c;不论是在pgAdmin中&#xff0c;还是在命令行控制台里面&#xff0c;在SQL语句中表示属性值的总会遇到ERROR: column “…” does not exist这样的错误&#xff0c;比如下面的语句&#xff1a; 解决方案&#xff1a;将 “txt2txt” 的双引号改成单引…

UDP协议结构及其注意事项

UDP报文结构 UDP报文结构主要是由两个部分组成的&#xff1a;UDP头部和数据部分。 UDP头部 源端口号&#xff1a;16位字段&#xff0c;指示数据发送方的端口号。目的端口号&#xff1a;16位字段&#xff0c;指示数据接收方端口号。UDP报文长度&#xff1a;16位字段&#xff0…

房地产推广传单制作攻略,打造让人惊艳的电子传单

随着互联网的发展&#xff0c;传统的纸质传单已经逐渐被电子版传单所取代。电子版传单不仅可以节省成本&#xff0c;还可以更好地展示房产信息。在传统的设计软件中制作电子版传单需要一定的门槛&#xff0c;但是现在有了乔拓云网的后台&#xff0c;设计电子版房产H5传单变得简…