轻松掌握opencv的8种图像变换

文章目录

  • opencv的8种图像变换
    • 1. 图像放大、缩小
    • 2. 图像平移
    • 3. 图像旋转
    • 4. 图像仿射变换
    • 5. 图像裁剪
    • 6. 图像的位运算(AND, OR, XOR)
    • 7. 图像的分离和融合
    • 8. 图像的颜色空间

opencv的8种图像变换

1. 图像放大、缩小

我们先看下原图
import cv2
import matplotlib.pyplot as plt
import numpy as np
img = cv2.imread(‘image/logo.png’)
plt.imshow(img)
在这里插入图片描述

看下图像大小
#height,width, channel
height,width,channel = img.shape
在这里插入图片描述

图像放大缩小
使用cv2.resize()方法
cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)
参数解释
在这里插入图片描述

dsize形参是个数组,数组的宽度在前,高度在后(output_width,output_height)
图像缩放之后,肯定像素要进行重新计算的,就靠这个参数来指定重新计算像素的方式,有以下几种:
INTER_NEAREST - 最近邻插值
INTER_LINEAR - 双线性插值,如果最后一个参数你不指定,默认使用这种方法
INTER_CUBIC - 4x4像素邻域内的双立方插值
INTER_LANCZOS4 - 8x8像素邻域内的Lanczos插值

#图像放大
resized_img = cv2.resize(img,(width2,height2),interpolation=cv2.INTER_LINEAR)
plt.imshow(resized_img)
在这里插入图片描述

看下此时图像大小,确守放大了1倍
在这里插入图片描述

图像缩小
#图像缩小
smaller_img = cv2.resize(img,None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
plt.imshow(smaller_img)
可以看到图像缩小了一倍
在这里插入图片描述

2. 图像平移

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)
src:输入图像
M:运算矩阵,2行3列的,数据类型要求是float32位及以上
dsize:运算后矩阵的大小,也就是输出图片的尺寸。是个元祖,宽度在前,高度在后
dst:输出图像
flags:插值方法的组合,与resize函数中的插值一样,可以查看cv2.resize
borderMode:像素外推方法,边界像素的模型( int 类型),详情参考官网
borderValue:在恒定边框的情况下使用的borderValue值; 边界填充的颜色, 默认为 (0, 0, 0) (黑色)

图像平移
#图像平移
#先获取原来的高和宽
height,width = img.shape[:2]
M = np.float32([[1,0,20],[0,1,10]]) #图像平移。向右平移20个像素,向下平移10个像素
move_img = cv2.warpAffine(img,M,(width,height))
在这里插入图片描述

我们详细分析下M这个矩阵
下面的M相当于就是一个运算矩阵。2行3列
在这里插入图片描述

根据定义,我们的坐标就可以根据A,B来进行运算
在这里插入图片描述

可以很轻易的得出以下方程
在这里插入图片描述

通过方程我们就可以很轻易的看出,c1和c2就相当于是让图像平移,而a和b这2个参数就是对图像进行旋转,缩放等操作。

对图片进行三维旋转
#图像旋转
#先获取原来的高和宽
height,width = img.shape[:2]
M = np.float32([[1,0.2,0],[0.2,1,0]]) #图像平移。向右平移20个像素,向下平移10个像素
scoll_img = cv2.warpAffine(img,M,(width,height))

plt.imshow(scoll_img)
在这里插入图片描述

3. 图像旋转

  1. rot_mat = cv2.getRotationMatrix2D(center, -5, 1)

参数说明:center表示中间点的位置,-5表示顺时针旋转5度,1表示进行等比列的缩放

  1. cv2.warpAffine(img, rot_mat, (img.shape[1], img.shape[0]))

参数说明: img表示输入的图片,rot_mat表示仿射变化矩阵,(image.shape[1], image.shape[0])表示变换后的图片大小
在这里插入图片描述

#先获取原来的高和宽
height,width = img.shape[:2]

#设置旋转的中心
center = (width //2.0, height//2.0) #旋转中心

M2 = cv2.getRotationMatrix2D(center,180,1) #1表示旋转过程中有没缩放,180表示逆时针旋转,负数表示顺时针旋转

rotation_img = cv2.warpAffine(img,M2,(width,height))

plt.imshow(rotation_img)

等比例旋转180
在这里插入图片描述

4. 图像仿射变换

对于更复杂仿射变换,OpenCV提供了函数cv2.getAffineTransform()来生成仿射函数cv2.warpAffine()所使用的转换矩阵M。
该函数的语法格式为:
retval=cv2.getAffineTransform(src, dst)
src代表输入图像的三个点坐标。
dst代表输出图像的三个点坐标。
参数值src和dst是包含三个一维数组(x, y)点的二维数组。
指代原始图像和目标图像内平行四边形的三个顶点(左上角、右上角、左下角)

上述参数通过函数cv2.getAffineTransform()定义了两个平行四边形。
src和dst中的三个点分别对应平行四边形的左上角、右上角、左下角三个点。
函数cv2.warpAffine()以函数cv2.getAffineTransform()获取的转换矩阵M为参数,将src中的点仿射到dst中。
函数cv2.getAffineTransform()对所指定的点完成映射后,将所有其他点的映射关系按照指定点的关系计算确定。

#图像仿射变换
p1 = np.float32([[120,35],[215,45],[135,120]])
p2 = np.float32([[135,45],[300,110],[130,230]])
M3 = cv2.getAffineTransform(p1,p2) #计算一个变换矩阵
trans_img = cv2.warpAffine(img,M3,(width,height))
plt.imshow(trans_img)
在这里插入图片描述

5. 图像裁剪

#图像剪裁,裁剪像素范围

crop_img = img[20:100,20:40]
plt.imshow(crop_img)
在这里插入图片描述

6. 图像的位运算(AND, OR, XOR)

位运算都是针对多张图形来计算的
我们先创建两个图形
绘制长方形
#长方形
rectangle = np.zeros((300,300),dtype=‘uint8’)
rect_img = cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.rectangle(img, pt1, pt2, color, thickness, lineType, shift )

参数表示依次为: (图片,长方形框左上角坐标, 长方形框右下角坐标, 字体颜色,字体粗细)

plt.imshow(rect_img)
在这里插入图片描述

画布画圆
circle(img, center, radius, color, thickness=None, lineType=None, shift=None):
含义:图片,中心店,半径,颜色,圆轮廓粗细,线类型。

#画圆
rectangle = np.zeros((300,300),dtype=‘uint8’)
circle_img = cv2.circle(rectangle,(150,150),150,255,-1)
plt.imshow(circle_img)
在这里插入图片描述

#与运算
and_img = cv2.bitwise_and(rect_img,circle_img)
plt.imshow(and_img)

可见两张图重合的部分被画出
在这里插入图片描述

#或运算 OR
or_img = cv2.bitwise_or(rect_img,circle_img)
plt.imshow(or_img)
在这里插入图片描述

#异或运算 XOR
两张图片不重叠的部分
xor_img = cv2.bitwise_xor(rect_img,circle_img)
plt.imshow(xor_img)
在这里插入图片描述

7. 图像的分离和融合

#图像的分离
B,G,R = cv2.split(img)

plt.imshow(B)
在这里插入图片描述

plt.imshow(G)
在这里插入图片描述

plt.imshow®
在这里插入图片描述

在使用opencv和matplotlib的过程中会遇到图像反色或者生成的是伪彩色图像的问题,
原因是两个读取RGB通道的顺序是不一样的,opencv的顺序是B-G-R,而matplotlib的顺序是R-G-B,所以这个区分就会产生一些矛盾。

图像合并
matplotlib这样显示才是正常颜色
plt.imshow(cv2.merge([R,G,B]))
在这里插入图片描述

对比下直接用matplotlib和cv2的显示
在这里插入图片描述

8. 图像的颜色空间

#颜色空间
#灰度
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(gray)
在这里插入图片描述

#HSV(色度,饱和度,纯度)
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
plt.imshow(hsv)
在这里插入图片描述

#lab
lab = cv2.cvtColor(img,cv2.COLOR_BGR2LAB)
plt.imshow(lab)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/697350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++面试:程序的编译与运行

程序的编译和运行是软件开发中的基本环节,尤其是在使用编译型语言(如C/C、Java等)进行开发时。这个过程涉及将人类可读的源代码转换成机器能够执行的指令,然后运行这些指令来完成既定的任务。下面是这一过程的详细介绍&#xff0c…

基于java+springboot+vue实现的美食信息推荐系统(文末源码+Lw)23-170

1 摘 要 使用旧方法对美食信息推荐系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在美食信息推荐系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发…

Shell好用的工具: cut

目标 使用cut可以切割提取指定列\字符\字节的数据 介绍 cut 译为“剪切, 切割” , 是一个强大文本处理工具,它可以将文本按列进行划分的文本处理。cut命令逐行读入文本,然后按列划分字段并进行提取、输出等操作。 语法 cut [options] filename opti…

树中枝繁叶茂:探索 B+ 树、B 树、二叉树、红黑树和跳表的世界

欢迎来到我的博客,代码的世界里,每一行都是一个故事 树中枝繁叶茂:探索 B 树、B 树、二叉树、红黑树和跳表的世界 前言B树和B树B树(Binary Tree):B树(B Plus Tree):应用场…

Cobra在ubuntu中设置自动补全

Cobra在ubuntu中设置自动补全 yourprogram指的是你程序&#xff0c;并且必须是使用了Cobra cli bash设置 $ source <(yourprogram completion bash)$ yourprogram completion bash > /etc/bash_completion.d/yourprogramzsh设置 $ echo "autoload -U compinit; …

Linux之用户和用户组用户账号系统文件

一、简介 1.用户的定义 在linux系统中用户&#xff08;User&#xff09;需要用用户账号来访问系统&#xff0c;服务和信息&#xff0c;系统中的每个进程&#xff08;运行的程序&#xff09;都是使用一个特定的用户运行。每个文件都属于一个特定的用户所有。对文件和目录的访…

STM32Cubemx TB6612直流电机驱动

一、TB6612FNG TB6612是一个支持双电机的驱动模块&#xff0c;支持PWM调速。PWMA、AIN1、AIN2 为一组控制引脚&#xff0c;PWMA 为 PWM 速度控制引脚&#xff0c;AIN1、AIN2 为方向控制引脚&#xff1b;PWMB、BIN1、BIN2 为一组控制引脚&#xff0c;PWMB 为 PWM 速度控制引脚&…

【力扣hot100】刷题笔记Day11

前言 科研不顺啊......又不想搞了&#xff0c;随便弄弄吧&#xff0c;多花点时间刷题&#xff0c;今天开启二叉树&#xff01; 94. 二叉树的中序遍历 - 力扣&#xff08;LeetCode&#xff09; 递归 # 最简单递归 class Solution:def inorderTraversal(self, root: TreeNode) …

idea运行项目时右下角弹出“Lombok requires enabled annotation processing”

文章目录 错误描述原因分析解决方式参考 错误描述 Lombok requires enabled annotation processing&#xff1a;翻译过来就是Lombok 需要启用注释处理 原因分析 idea安装了Lombok插件&#xff0c;但有些设置未做。 解决方式 参考 idea配置和使用Lombok

全文搜索的工作原理讲解

Elasticsearch全文搜索是一种强大的搜索技术&#xff0c;它基于Lucene构建&#xff0c;能够处理大规模数据集&#xff0c;提供快速、准确的搜索结果。要充分利用Elasticsearch的全文搜索能力&#xff0c;关键在于理解和应用其核心组件&#xff1a;分词&#xff08;Tokenization…

【FPGA】高云FPGA之数字钟实验->HC595驱动数码管

高云FPGA之IP核的使用 1、设计定义2、设计输入2.1 数码管译码显示2.2 74HC595驱动2.3 主模块设计 3、分析和综合4、功能仿真6.1 hex8模块仿真6.2 HC595模块 5、布局布线6、时序仿真7、IO分配以及配置文件&#xff08;bit流文件&#xff09;的生成8、配置&#xff08;烧录&#…

代码检测规范和git提交规范

摘要&#xff1a;之前开发的项目&#xff0c;代码检测和提交规范都是已经配置好的&#xff0c;最近自己新建的项目就记录下相关配置过程。 1. ESlint配置 2013年6月创建开源项目&#xff0c;提供一个插件化的JavaScript代码检测工具&#xff0c;创建项目是生成的eslintrc.js文…

【算法分析与设计】

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;算法分析与设计 ⛺️稳中求进&#xff0c;晒太阳 题目 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中数字位…

如何使用Express框架构建一个简单的Web应用

在这个数字化时代&#xff0c;Web应用的需求越来越多样化和复杂化。在前端开发领域&#xff0c;Express框架作为一个快速、灵活的Node.js Web应用程序框架&#xff0c;拥有强大的功能和丰富的生态系统&#xff0c;深受开发者们的青睐。本篇博客将带您一步步探索如何使用Express…

AUTOSAR汽车电子嵌入式编程精讲300篇-基于深度学习的车载总线网络入侵检测

目录 前言 国内外研究现状 汽车 CAN 网络攻击现状 2 汽车 CAN 总线介绍及信息安全问题分析</

MR混合现实情景实训教学系统在高空作业课堂中的应用

高空作业是一项高风险的工作&#xff0c;对于从业者来说&#xff0c;不仅需要具备专业的技能&#xff0c;还需要有丰富的实践经验。然而&#xff0c;传统的课堂教学往往只能通过理论讲解和模拟训练来传授知识&#xff0c;无法提供真实的实践环境。而MR混合现实情景实训教学系统…

Alias许可分析中的数据可视化

Alias许可分析中的数据可视化&#xff1a;引领企业洞察合规之道的明灯 在信息化时代&#xff0c;数据可视化已成为各行各业的重要工具&#xff0c;能够帮助用户直观地理解和分析复杂的数据。在Alias许可分析中&#xff0c;数据可视化同样发挥着至关重要的作用&#xff0c;为企…

【小程序】应用程序编程接口汇总——授权API、OTA API、家庭API

授权API ty.authorize 权限请求方法 需引入BaseKit&#xff0c;且在>1.2.10版本才可使用 参数 Object object 属性类型默认值必填说明scopestring是scope 权限名称 举例子&#xff1a; scope.bluetooth 蓝牙权限 scope.writePhotosAlbum 写入相册权限 scope.userLocatio…

知乎高赞回复合集,句句道出生活的真相

1. 怎么定义“想清楚了”&#xff1f; “想清楚了”就是以后出了什么问题&#xff0c;你只能找个没人的地方抽自己&#xff0c;再也不能抱怨别人了。 2. “别让孩子输在起跑线上”有道理吗&#xff1f; 一辈子都要和别人去比较&#xff0c;是人生悲剧的源头。 3. 太在乎自己…

鸿蒙OS运行报错 ‘ToDoListItem({ item })‘ does not meet UI component syntax.

在学习harmonyOS时&#xff0c;原本是好好运行的。但是突然报错 ToDoListItem({ item }) does not meet UI component syntax. 一脸懵逼&#xff0c;以为是自己语法问题检查了半天也没问题。 网上搜索了一下&#xff0c;说把多余的js\map文件删除就行 才发现我的 鸿蒙的开…