五种多目标优化算法(NSWOA、MOJS、MOAHA、MOPSO、NSGA2)性能对比(提供MATLAB代码)

一、5种多目标优化算法简介

1.1NSWOA

1.2MOJS

1.3MOAHA

1.4MOPSO

1.5NSGA2

二、5种多目标优化算法性能对比

为了测试5种算法的性能将其求解9个多目标测试函数(zdt1、zdt2 、zdt3、 zdt4、 zdt6 、Schaffer、 Kursawe 、Viennet2、 Viennet3),其中Viennet2 与Viennet3的目标为3,其余测试函数的目标为2,并采用6种评价指标(IGD、GD、HV、Coverage、Spread、Spacing)进行评价对比

2.1部分代码

close all;
clear ;
clc;
addpath('./MOJS/')%添加算法路径
addpath('./MOGWO/')%添加算法路径
addpath('./NSWOA/')%添加算法路径
addpath('./MOPSO/')%添加算法路径
addpath('./MOAHA/')%添加算法路径
%%
% TestProblem测试问题说明:
%一共9个多目标测试函数1-9分别是: zdt1 zdt2 zdt3 zdt4 zdt6 Schaffer  Kursawe Viennet2 Viennet3
%%
TestProblem=9;%测试函数1-9
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size 种群大小
params.Nr = 200;        % Repository size 外部存档
params.maxgen=50;    % Maximum number of generations 最大迭代次数
numOfObj=MultiObj.numOfObj;%目标函数个数
%% 算法求解,分别得到paretoPOS和paretoPOF
[Xbest1,Fbest1] = MOGWO(params,MultiObj);
[Xbest2,Fbest2] = MOJS(params,MultiObj);
[Xbest3,Fbest3]  = NSWOA(params,MultiObj);
[Xbest4,Fbest4] = MOPSO(params,MultiObj);
[Xbest5,Fbest5]  = MOAHA(params,MultiObj);
FbestData(1).data=Fbest1;
FbestData(2).data=Fbest2;
FbestData(3).data=Fbest3;
FbestData(4).data=Fbest4;
FbestData(5).data=Fbest5;
%% 获取测试函数的真实pareto前沿
True_Pareto=MultiObj.truePF;
%% 计算每个算法的评价指标
% ResultData的值分别是IGD、GD、HV、Coverage、Spread、Spacing
for i=1:5Fbest=FbestData(i).data;ResultData(i,:)=[IGD(Fbest,True_Pareto),GD(Fbest,True_Pareto),HV(Fbest,True_Pareto),Coverage(Fbest,True_Pareto),Spread(Fbest,True_Pareto),Spacing(Fbest,True_Pareto)];
end%% 画图
PlotFigure;

2.2部分结果

(1)以Kursawe为例:

(2)以Viennet2为例:

三、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/695385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式-创建型模式-抽象工厂模式

抽象工厂模式(Abstract Factory Pattern):提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类。抽象工厂模式又称为Kit模式,它是一种对象创建型模式。 由于工厂方法模式中的每个工厂只生产一类产品&…

stm32——hal库学习笔记(DAC)

这里写目录标题 一、DAC简介(了解)1.1,什么是DAC?1.2,DAC的特性参数1.3,STM32各系列DAC的主要特性 二、DAC工作原理(掌握)2.1,DAC框图简介(F1)2.2…

《穿越科技的前沿:计算机专业必看的电影盛宴》

文章目录 每日一句正能量前言电影推荐推荐一:《黑客帝国》推荐二:《社交网络》推荐三:《源代码》推荐四:《谍影重重》系列推荐五:《旋转木马》 技术与主题后记 每日一句正能量 一个人的一生,就是一座有了年…

探索Go语言中的HTTP路由和中间件

在Go语言中,HTTP路由和中间件是实现Web应用程序核心功能的关键组件。路由负责将传入的HTTP请求分发到适当的处理函数,而中间件则提供了一种在请求处理过程中插入额外逻辑的机制。 HTTP路由 在Go中,net/http标准库提供了基本的路由功能&…

WebGIS开发技术岗真实面经分享!

24春招在即,很多人都已经在开始踏上面试的征程 面对日益严峻的就业环境,想获得更好的工作机会,没有捷径可走,只有不断提升才是硬道理。在此小编分享几个网友GIS开发岗真实的面试经历,希望对正在求职的你,有…

六、回归与聚类算法 - 线性回归

目录 1、线性回归的原理 1.1 应用场景 1.2 什么是线性回归 1.2.1 定义 1.2.2 线性回归的特征与目标的关系分析 2、线性回归的损失和优化原理 2.1 损失函数 2.2 优化算法 2.2.1 正规方程 2.2.2 梯度下降 3、线性回归API 4、回归性能评估 5、波士顿房价预测 5.1 流…

Nginx 和 Apache 的比较

Nginx和Apache的对比 Nginx和Apache的优缺点比较 (1)nginx相对于apache的优点 ①轻量级,同样起web服务,比apache占用更少的内存及资源 ②抗并发,nginx处理请求是异步非阻塞的,而apache是阻塞型的在高并发下,nginx能保持…

yolov5-tracking-xxxsort yolov5融合六种跟踪算法(二)--目标识别

本次开源计划主要针对大学生无人机相关竞赛的视觉算法开发。 开源代码仓库链接:https://github.com/zzhmx/yolov5-tracking-xxxsort.git 先按照之前的博客配置好环境: yolov5-tracking-xxxsort yolov5融合六种跟踪算法(一)–环境配…

【快速搞定Webpack5】处理样式资源(三)

本次内容我们将学习使用webpack如何处理css、less、sass、scss等样式资源 介绍 webpack本身是不能识别样式资源的,所以我们需要借助loader包来帮助webpack解析样式资源 我们找loader都应该去官方文档中查找对应的loader,然后学习使用。 官方文档找不到…

Linux中安装Nginx及日常配置使用

高性能的http服务器/反向代理服务器。官方测试支持5万并发,CPU、内存等消耗较低且运行稳定 使用场景 Http服务器。 Nginx可以单独提供Http服务,做为静态网页的服务器。虚拟主机。 可以在一台服务器虚拟出多个网站。反向代理与负载均衡。 Nginx做反向代理…

LaWGPT—基于中文法律知识的大模型

文章目录 LaWGPT:基于中文法律知识的大语言模型数据构建模型及训练步骤两个阶段二次训练流程指令精调步骤计算资源 项目结构模型部署及推理 LawGPT_zh:中文法律大模型(獬豸)数据构建知识问答模型推理训练步骤 LaWGPT:基…

【转载】企业资产收集与脆弱性检查工具

简介 云图极速版是针对拥有攻击面管理需求的用户打造的 SaaS 应用,致力于协助用户管理互联网资产攻击面的 SaaS 化订阅服务产品。可实现对备案域名、子域名、IP、端口、服务、网站、漏洞、安全风险等场景进行周期性监控,支持多维度分析攻击面。利用可视化…

《图解设计模式》笔记(一)适应设计模式

图灵社区 - 图解设计模式 - 随书下载 评论区 雨帆 2017-01-11 16:14:04 对于设计模式,我个人认为,其实代码和设计原则才是最好的老师。理解了 SOLID,如何 SOLID,自然而然地就用起来设计模式了。Github 上有一个 tdd-training&…

redis复习笔记06(小滴课堂)

分布式锁核心知识介绍和注意事项 基于Redis实现分布式锁的几种坑 综合伪代码: 运行:

HarmonyOS开发技术全面分析

系统定义 HarmonyOS 是一款 “ 面向未来 ” 、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。在传统的单设备系统能力的基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能够…

探索亚马逊自养号测评的实际效果与使用感受

自养号在亚马逊测评中的应用给了我们一种全新的体验。通过使用亚马逊自养号,我们发现了许多令人满意的优势,这些优势不仅提升了我们的测评效率,还增加了我们的信誉度。 首先,自养号的质量可控性给了我们极大的信心。我们可以自行…

基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版…

【Vue渗透】Vue站点渗透思路

原文地址 极核GetShell 前言 本文经验适用于前端用Webpack打包的Vue站点,阅读完本文,可以识别出Webpack打包的Vue站点,同时可以发现该Vue站点的路由。 成果而言:可能可以发现未授权访问。 识别Vue 识别出Webpack打包的Vue站…

FFmpeg的HEVC解码器源代码学习笔记-1

一直想写一个HEVC的码流解析工具,看了雷神264码流解析工具,本来想尝试模仿写一个相似的265码流分析工具,但是发现265的解码过程和结构体和264的不太一样,很多结构体并没有完全暴露出来,没有想到很好的方法获得量化参数…

自增a++和自减a--详细解析

1.自增、自减运算符是什么,有什么作用,需要注意什么? 、–;对当前变量值1、-1只能操作变量,不能操作字面量 2.自增、自减运算符放在变量前后有区别吗? 如果单独使用放前放后是没有区别的非单独使用:在变量前,先进行变量自增/…