LaWGPT—基于中文法律知识的大模型

文章目录

  • LaWGPT:基于中文法律知识的大语言模型
    • 数据构建
    • 模型及训练步骤
      • 两个阶段
        • 二次训练流程
        • 指令精调步骤
        • 计算资源
    • 项目结构
    • 模型部署及推理
  • LawGPT_zh:中文法律大模型(獬豸)
    • 数据构建
    • 知识问答
    • 模型推理
    • 训练步骤

LaWGPT:基于中文法律知识的大语言模型

LaWGPT是2023年5月13日发布的一系列基于中文法律知识的开源大语言模型。

该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。

github地址:https://github.com/pengxiao-song/LaWGPT/tree/main

数据构建

本项目基于中文裁判文书网公开法律文书数据、司法考试数据等数据集展开,详情参考中文法律数据源汇总(Awesome Chinese Legal Resources)。

  1. 初级数据生成:根据 Stanford_alpaca 和 self-instruct 方式生成对话问答数据
  2. 知识引导的数据生成:通过 Knowledge-based Self-Instruct 方式基于中文法律结构化知识生成数据。
  3. 引入 ChatGPT 清洗数据,辅助构造高质量数据集。

模型及训练步骤

2023/04/12,内部测试模型:
LaWGPT-7B-alpha:在 Chinese-LLaMA-7B 的基础上直接构造 30w 法律问答数据集指令精调;

2023/05/13,公开发布两个模型:
Legal-Base-7B:法律基座模型,使用 50w 中文裁判文书数据并基于 Chinese-LLaMA-7B 模型二次预训练后得到的模型,Legal-Base-7b模型(无需合并)下载地址:
https://huggingface.co/yusp998/legal_base-7b
https://hf-mirror.com/yusp998/legal_base-7b
LaWGPT-7B-beta1.0:法律对话模型,构造 30w 高质量法律问答数据集基于 Legal-Base-7B 指令精调后的模型

2023/05/30:公开发布一个模型
LaWGPT-7B-beta1.1:法律对话模型,构造 35w 高质量法律问答数据集,基于 Chinese-alpaca-plus-7B 指令精调后的模型。

两个阶段

LawGPT 系列模型的训练过程分为两个阶段:

第一阶段:扩充法律领域词表,在大规模法律文书及法典数据上预训练 Chinese-LLaMA
第二阶段:构造法律领域对话问答数据集,在预训练模型基础上指令精调

二次训练流程

参考 resources/example_instruction_train.json 构造二次训练数据集
运行 scripts/train_clm.sh

指令精调步骤

参考 resources/example_instruction_tune.json 构造指令微调数据集
运行 scripts/finetune.sh

计算资源

8 张 Tesla V100-SXM2-32GB :二次训练阶段耗时约 24h / epoch,微调阶段耗时约 12h / epoch

由于 LLaMA 和 Chinese-LLaMA 没有开源模型权重。根据相应开源许可,本项目只能发布 LoRA 权重,无法发布完整的模型权重。

项目结构

LaWGPT
├── assets    # 静态资源
├── resources # 项目资源
├── models    # 基座模型及 lora 权重
│   ├── base_models
│   └── lora_weights
├── outputs   # 指令微调的输出权重
├── data      # 实验数据
├── scripts   # 脚本目录
│   ├── finetune.sh # 指令微调脚本
│   └── webui.sh    # 启动服务脚本
├── templates # prompt 模板
├── tools     # 工具包
├── utils
├── train_clm.py  # 二次训练
├── finetune.py   # 指令微调
├── webui.py      # 启动服务
├── README.md
└── requirements.txt

模型部署及推理

  1. 准备代码,创建环境

    # 下载代码
    git clone git@github.com:pengxiao-song/LaWGPT.git
    cd LaWGPT# 创建环境
    conda create -n lawgpt python=3.10 -y
    conda activate lawgpt
    pip install -r requirements.txt
    

启动 web ui(可选,易于调节参数)

  • 首先,执行服务启动脚本:bash scripts/webui.sh
  • 其次,访问 http://127.0.0.1:7860 :
    在这里插入图片描述
    命令行推理(可选,支持批量测试)

首先,参考 resources/example_infer_data.json 文件内容构造测试样本集;

其次,执行推理脚本:bash scripts/infer.sh。其中 --infer_data_path 参数为测试样本集路径,如果为空或者路径出错,则以交互模式运行。

注意,以上步骤的默认模型为 LaWGPT-7B-alpha ,如果您想使用 LaWGPT-7B-beta1.0 模型,则通过以下三个步骤获取:
1. 获取 Chinese-LLaMA-7B 原版模型权重

首先,需要获得 Chinese-LLaMA-7B 的原版模型权重。以下是一些可供参考的获取方式:

  1. 手动合并:根据 Chinese-LLaMA 官方文档 提供的合并步骤,手动合并模型权重
  2. 检索下载:在 Hugging Face 官网:模型检索

将模型权重文件夹移动至 models/base_models 目录下,如 models/base_models/chinese-llama-7b-merged

2. 获取 legal-lora-7b 模型权重

下载 legal-lora-7b 模型权重,

将模型权重文件夹移动至 models/lora_weights 目录下,如 models/lora_weights/legal-lora-7b

3. 运行合并脚本

最后,合并原版 Chinese-LLaMA-7B 模型权重和二次训练到的 legal-lora-7b 权重:

sh scripts/merge.sh

LawGPT_zh:中文法律大模型(獬豸)

LawGPT_zh模型由上海交通大学科研团队通过ChatGLM-6B LoRA 16-bit 指令微调得到中文法律大模型。数据集包括现有的法律问答数据集基于法条和真实案例指导的self-Instruct构建的高质量法律文本问答数据集,提高了通用语言大模型在法律领域的表现,提高了模型回答的可靠性和专业程度。
github地址:

数据构建

数据主要分为两个部分:

  1. 律师和用户之间的情景对话
  2. 对特定法律知识的问答
数据类型描述数量占比(%)
情景对话真实的律师用户问答200k100
知识问答法律知识问题的解释性回答coming soon0
总计-200k100

情景对话数据

真实的中文律师用户问答数据,来自CrimeKgAssitant 收集的200k条情景对话数据,该数据集来自刘焕勇老师的开源项目。

question:朋友欠钱不还咋办
answers: ['欠款金额是多少 ', '多少钱呢', '律师费诉讼费都非常少都很合理,一定要起诉。', '大概金额多少?', '需要看标的额和案情复杂程度,建议细致面谈']
*******************************************************
question:昨天把人家车刮了,要赔多少
answers: ['您好,建议协商处理,如果对方告了你们,就只能积极应诉了。', '您好,建议尽量协商处理,协商不成可起诉']
*******************************************************
question:最近丈夫经常家暴,我受不了了
answers: ['报警要求追究刑事责任。', '您好,建议起诉离婚并请求补偿。', '你好!可以起诉离婚,并主张精神损害赔偿。']
*******************************************************
question:毕业生拿了户口就跑路可以吗
answers: 您好,对于此类问题,您可以咨询公安部门
*******************************************************
question:孩子离家出走,怎么找回来
answers: ['孩子父母没有结婚,孩子母亲把孩子带走了?这样的话可以起诉要求抚养权的。毕竟母亲也是孩子的合法监护人,报警警察一般不受理。']
*******************************************************

利用ChatGPT清洗CrimeKgAssitant数据集得到52k单轮问答数据

下载(提取码:MYTT)

利用ChatGPT根据CrimeKgAssitant的问答重新生成,使得生成的回答比原回答更详细,语言组织更规范。

带有法律依据的情景问答92k

下载(提取码:MYTT)

根据中华人民共和国法律手册上最核心的9k法律条文,利用ChatGPT联想生成具体的情景问答,从而使得生成的数据集有具体的法律依据。数据格式如下

"question": "在某家公司中,一名员工对女同事实施了性骚扰行为,女同事向公司进行举报,但公司却没有采取必要的措施来制止这种行为。\n\n公司未采取必要措施预防和制止性骚扰,导致女同事的权益受到侵害,该公司是否需要承担责任?"
"answer": "根据《社会法-妇女权益保障法》第八十条规定,“学校、用人单位违反本法规定,未采取必要措施预防和制止性骚扰,造成妇女权益受到侵害或者社会影响恶劣的,由上级机关或者主管部门责令改正;拒不改正或者情节严重的,依法对直接负责的主管人员和其他直接责任人员给予处分。”因此,该公司因为未采取必要措施预防和制止性骚扰行为,应该承担责任,并依法接受相关的处分。女同事可以向上级机关或主管部门进行申诉,要求该公司被责令改正,并对相关负责人员给予处分。"
"reference": ["社会法-妇女权益保障法2022-10-30:    \"第七十九条 违反本法第二十二条第二款规定,未履行报告义务的,依法对直接负责的主管人员和其他直接责任人员给予处分。\",\n","社会法-妇女权益保障法2022-10-30:    \"第八十条 违反本法规定,对妇女实施性骚扰的,由公安机关给予批评教育或者出具告诫书,并由所在单位依法给予处分。\",\n","社会法-妇女权益保障法2022-10-30:    \"学校、用人单位违反本法规定,未采取必要措施预防和制止性骚扰,造成妇女权益受到侵害或者社会影响恶劣的,由上级机关或者主管部门责令改正;拒不改正或者情节严重的,依法对直接负责的主管人员和其他直接责任人员给予处分。\",\n","社会法-妇女权益保障法2022-10-30:    \"第八十一条 违反本法第二十六条规定,未履行报告等义务的,依法给予警告、责令停业整顿或者吊销营业执照、吊销相关许可证,并处一万元以上五万元以下罚款。\",\n"]

知识问答

收集法律领域的教科书,经典案例等数据,自建一个法律专业知识数据库。

知识问答数据集针对Self-Instruct的可靠性和安全性漏洞,使用了基于特定知识的Reliable-Self-Instruction:通过提供具体的法律知识文本,先让ChatGPT生成与该段法律知识内容与逻辑关系相关的若干问题,再通过“文本段-问题”对的方式让ChatGPT回答问题,从而使ChatGPT能够生成含有法律信息的回答,保证回答的准确性。
在这里插入图片描述
其中,计划法律知识数据包含民法商法、行政法、经济法、社会法、刑法等各个细分法律的条例,分析和题库。

模型推理

  1. 配置项目依赖环境

    cd src
    pip install -r requirements.txt
    #其中peft需要本地安装
    cd peft
    pip install -e .
    
  2. 下载(提取码:fj9d)ChatGLM-6B模型参数(ChatGLM权重参数有变化,以及函数进行了修改,请下载全部文件),将其放入./model目录下。

  3. 下载(提取码:ymor)检索模型参数,将其放入./retriver目录下。

  4. 下载text2vec-base-chinese模型参数,将其放入./text2vec-base-chinese目录下。

  5. 运行交互文件(要求单卡显存 >= 15G),输入new chat可以清空上下文信息

    #demo.py为直接生成
    CUDA_VISIBLE_DEVICES=$cuda_id python ./demo.py
    
    #demo_r.py加入了检索功能
    CUDA_VISIBLE_DEVICES=$cuda_id python ./demo_r.py
    
  6. 命令行交互界面实例

    Human:
    信用卡欠账不还后果很严重吗?
    ------------------------------------------------
    Answer:
    信用卡欠款如果不及时偿还,会对自己产生严重的影响。下面是一些可能的后果:
    1.利息和罚款:如果未在规定时间内还款,则会开始收取滞纳金和利息,费用可能会非常高;
    2.信用记录受损:逾期付款会影响个人的信用报告,使个人在未来申请贷款、购房和其他业务时面临困难;
    3.银行起诉:若未能在指定时间内还清全额账单,可能会被银行起诉至法院要求归还债务并支付相应的诉讼费用;
    4.法律风险:逾期付款可能会导致合同违约,构成违约则需要承担违约责任(包括赔偿损失);
    5.失去使用信用卡的权利:如果发现自己的信用记录中存在多次逾期或其他不良记录,将会失去使用某些信用卡或贷款的机会。
    因此,为了避免以上情况的发生,应合理规划好开支,按时按量偿还信用卡欠款。
    

训练步骤

  1. 下载训练数据集
  2. 配置好train_lora.py参数
  3. 运行train_lora.py函数(使用模型并行算法,请勿同时使用数据并行)

本项目训练代码采用模型并行算法,可以在最少4张3090显卡上完成对ChatGLM LoRA 16-bit的指令微调。训练命令如下

cd src
CUDA_VISIBLE_DEIVCES=$cuda_id python train.py \--title $YOUR_EXP_NAME \--train_path $YOUR_TRAINING_DATA_PATH \--save_dir $YOUR_LORA_CHECKPOINT_SAVE_PATH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/695373.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【转载】企业资产收集与脆弱性检查工具

简介 云图极速版是针对拥有攻击面管理需求的用户打造的 SaaS 应用,致力于协助用户管理互联网资产攻击面的 SaaS 化订阅服务产品。可实现对备案域名、子域名、IP、端口、服务、网站、漏洞、安全风险等场景进行周期性监控,支持多维度分析攻击面。利用可视化…

《图解设计模式》笔记(一)适应设计模式

图灵社区 - 图解设计模式 - 随书下载 评论区 雨帆 2017-01-11 16:14:04 对于设计模式,我个人认为,其实代码和设计原则才是最好的老师。理解了 SOLID,如何 SOLID,自然而然地就用起来设计模式了。Github 上有一个 tdd-training&…

redis复习笔记06(小滴课堂)

分布式锁核心知识介绍和注意事项 基于Redis实现分布式锁的几种坑 综合伪代码: 运行:

HarmonyOS开发技术全面分析

系统定义 HarmonyOS 是一款 “ 面向未来 ” 、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。在传统的单设备系统能力的基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能够…

探索亚马逊自养号测评的实际效果与使用感受

自养号在亚马逊测评中的应用给了我们一种全新的体验。通过使用亚马逊自养号,我们发现了许多令人满意的优势,这些优势不仅提升了我们的测评效率,还增加了我们的信誉度。 首先,自养号的质量可控性给了我们极大的信心。我们可以自行…

基于CNN-GRU-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 CNN(卷积神经网络)部分 4.2 GRU(门控循环单元)部分 4.3 Attention机制部分 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版…

【Vue渗透】Vue站点渗透思路

原文地址 极核GetShell 前言 本文经验适用于前端用Webpack打包的Vue站点,阅读完本文,可以识别出Webpack打包的Vue站点,同时可以发现该Vue站点的路由。 成果而言:可能可以发现未授权访问。 识别Vue 识别出Webpack打包的Vue站…

FFmpeg的HEVC解码器源代码学习笔记-1

一直想写一个HEVC的码流解析工具,看了雷神264码流解析工具,本来想尝试模仿写一个相似的265码流分析工具,但是发现265的解码过程和结构体和264的不太一样,很多结构体并没有完全暴露出来,没有想到很好的方法获得量化参数…

自增a++和自减a--详细解析

1.自增、自减运算符是什么,有什么作用,需要注意什么? 、–;对当前变量值1、-1只能操作变量,不能操作字面量 2.自增、自减运算符放在变量前后有区别吗? 如果单独使用放前放后是没有区别的非单独使用:在变量前,先进行变量自增/…

unity学习(36)——角色选取界面(自制美工)

1.添加一个背景图片,记不住可以查之前的资料(4) 图片拖入asset,属性设成sprite;把图片拖到source image中;colour白色(透明,点一下右边的笔即可);material为…

SpringCloud-Gateway网关的使用

本文介绍如何再 SpringCloud 项目中引入 Gateway 网关并完成网关服务的调用。Gateway 网关是一个在微服务架构中起到入口和路由控制的关键组件。它负责处理客户端请求,进行路由决策,并将请求转发到相应的微服务。Gateway 网关还可以实现负载均衡、安全认…

vue大文件读取部分内容,避免重复加载大文件,造成流量浪费

使用场景:项目点云地图是pcd文件,但是文件可能上百兆,我需要获取到文件中的版本信息,跟本地的缓存文件做比较,如果不一致,才会加载整个文件。从而节省流量。 避免重复加载整个“.pcd文件,以最大…

【PX4学习笔记】04.QGC地面站的使用

目录 文章目录 目录PX4代码烧入PX4固件代码的烧入方式1PX4固件代码的烧入方式2 QGC地面站的基础使用连接地面站的方式查看关键的硬件信息 QGC地面站的Application Settings模块Application Settings模块-常规界面单位其他设置数据持久化飞机中的数传日志飞行视图计划视图自动连…

观察者模式, 发布-订阅模式, 监听器模式

观察者模式, 发布-订阅模式, 监听器模式 观察者模式 观察者模式是一种行为型设计模式, 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新 角色模型和结构图 在观察者模式中,只有两种…

HarmonyOS Stage模型基本概念讲解

本文 我们来说harmonyos中的一种应用模型 Stage模型 官方提供了两种模型 一种是早期的 FA模型 另一种就是就是 harmonyos 3.1才开始的新增的一种模型 Stage模型 目前来讲 Stage 会成为现在乃至将来 长期推进的一种模型 也就是 无论是 现在的harmonyos 4.0 乃至 之后要发布的 …

IP地理位置查询定位:技术原理与实际应用

在互联网时代,IP地址是连接世界的桥梁,而了解IP地址的地理位置对于网络管理、个性化服务以及安全监控都至关重要。IP数据云将深入探讨IP地理位置查询定位的技术原理、实际应用场景以及相关的隐私保护问题,旨在为读者提供全面了解和应用该技术…

印刷机械故障诊断:虹科MSR165助力Müller Martini AG成功案例

在为杂志装订机开发新产品的过程中,作为印刷后处理机械领域的全球领导者,Mller Martini AG公司发现了传感器故障的问题。通过使用虹科MSR 微型加速度数据记录仪,成功地确定了故障的原因。 新杂志装订机中的三刀修整装置的故障部件是边缘传感器…

BOSS直聘招聘经验

招聘低端兼职岗位。流量很大,来的人通常实力也不足。 招聘高端兼职岗位。流量不多。来的人通常具备一定实力。 招聘高薪职位,流量一般,会有有实力的勾搭。 招聘低薪职位,流量一般。通常没什么实力。

使用 Optimum Intel 在英特尔至强上加速 StarCoder: Q8/Q4 及投机解码

引言 近来,随着 BigCode 的 StarCoder 以及 Meta AI 的 Code Llama 等诸多先进模型的发布,代码生成模型变得炙手可热。同时,业界也涌现出了大量的致力于优化大语言模型 (LLM) 的运行速度及易用性的工作。我们很高兴能够分享我们在英特尔至强 …

测试多线程架构的问题

在测试多线程架构时,需要考虑多个方面以确保系统的稳定性和性能。以下是一些关键问题,需要在测试过程中特别关注: 线程同步 多线程环境中,线程同步是非常重要的问题。由于多个线程可能同时访问共享资源,因此需要使用…