【广度优先搜索】【网格】【割点】【 推荐】1263. 推箱子

作者推荐

视频算法专题

涉及知识点

广度优先搜索 网格 割点 并集查找

LeetCode:1263. 推箱子

「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 m x n 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 ‘B’ 移动到目标位置 ‘T’ :
玩家用字符 ‘S’ 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。
地板用字符 ‘.’ 表示,意味着可以自由行走。
墙用字符 ‘#’ 表示,意味着障碍物,不能通行。
箱子仅有一个,用字符 ‘B’ 表示。相应地,网格上有一个目标位置 ‘T’。
玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。
玩家无法越过箱子。
返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1。
示例 1:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“.”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
在这里插入图片描述

输出:3
解释:我们只需要返回推箱子的次数。
示例 2:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“#”,“#”,“#”,“#”],
[“#”,“.”,“.”,“B”,“.”,“#”],
[“#”,“#”,“#”,“#”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:-1
示例 3:
输入:grid = [[“#”,“#”,“#”,“#”,“#”,“#”],
[“#”,“T”,“.”,“.”,“#”,“#”],
[“#”,“.”,“#”,“B”,“.”,“#”],
[“#”,“.”,“.”,“.”,“.”,“#”],
[“#”,“.”,“.”,“.”,“S”,“#”],
[“#”,“#”,“#”,“#”,“#”,“#”]]
输出:5
解释:向下、向左、向左、向上再向上。

提示:

m == grid.length
n == grid[i].length
1 <= m, n <= 20
grid 仅包含字符 ‘.’, ‘#’, ‘S’ , ‘T’, 以及 ‘B’。
grid 中 ‘S’, ‘B’ 和 ‘T’ 各只能出现一个。

01广度优先搜索

状态:箱子所在行列,人所在行列
人试图向上下左右移动。以左移为例。
{ 如果人可以左移,人左移,加到队首 箱子不在左边 如果人和箱子都可以左移,人箱子左移,加到队尾 箱子在人左边 \begin{cases} 如果人可以左移,人左移,加到队首 & 箱子不在左边\\ 如果人和箱子都可以左移,人箱子左移,加到队尾 &箱子在人左边\\ \end{cases} {如果人可以左移,人左移,加到队首如果人和箱子都可以左移,人箱子左移,加到队尾箱子不在左边箱子在人左边
妙在无需考虑: 箱子对人的影响。

代码

核心代码

class CBFS
{
public:CBFS(int iStatuCount, int iInit = -1):m_iStatuCount(iStatuCount),m_iInit(iInit){m_res.assign(iStatuCount, iInit);}bool Peek(int& statu){if (m_que.empty()){return false;}statu = m_que.front();m_que.pop_front();return true;}void PushBack(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_back(statu);}void PushFront(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_front(statu);}int Get(int statu){return m_res[statu];}
private:const int m_iStatuCount;const int m_iInit;deque<int> m_que;vector<int> m_res;
};class CBFS2 : protected CBFS
{
public:CBFS2(int iStatuCount1,int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit ), m_iStatuCount2(iStatuCount2){}bool Peek(int& statu1,int& statu2 ){int statu;if (!CBFS::Peek(statu)){return false;}statu1 = statu / m_iStatuCount2;statu2 = statu % m_iStatuCount2;return true;}void PushBack(int statu1,int statu2, int value){CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);}void PushFront(int statu1, int statu2, int value){CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);}int Get(int statu1, int statu2){return CBFS::Get(statu1 * m_iStatuCount2 + statu2);}
private:const int m_iStatuCount2;
};class CBFS3 : protected CBFS2
{
public:CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3){}bool Peek(int& statu1, int& statu2,int& statu3 ){int statu23;if (!CBFS2::Peek(statu1,statu23)){return false;}statu2 = statu23 / m_iStatuCount3;statu3 = statu23 % m_iStatuCount3;return true;}void PushBack(int statu1, int statu2,int statu3, int value){CBFS2::PushBack(statu1 , statu2*m_iStatuCount3+statu3, value);}void PushFront(int statu1, int statu2, int statu3, int value){CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);}int Get(int statu1, int statu2, int statu3){return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);}const int m_iStatuCount3;
};class CBFS4 : protected CBFS3
{
public:CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3,int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4){}bool Peek(int& statu1, int& statu2, int& statu3,int& statu4){int statu34;if (!CBFS3::Peek(statu1, statu2,statu34)){return false;}statu3 = statu34 / m_iStatuCount4;statu4 = statu34 % m_iStatuCount4;return true;}void PushBack(int statu1, int statu2, int statu3,int statu4, int value){CBFS3::PushBack(statu1, statu2 , statu3* m_iStatuCount4+ statu4, value);}void PushFront(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}int Get(int statu1, int statu2, int statu3, int statu4){return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);}const int m_iStatuCount4;
};template<class T>
class CEnumGrid
{
public:static  void EnumGrid(const vector<vector<T>>& grid,std::function<void(int,int,T)> call ){for (int r = 0; r < grid.size(); r++){for (int c = 0; c < grid.front().size(); c++){call(r, c, grid[r][c]);}}}
};
class Solution {
public:int minPushBox(vector<vector<char>>& grid) {m_r = grid.size();m_c = grid[0].size();int move[4][2] = { {1,0},{-1,0},{0,1},{0,-1} };auto CanMove = [&grid](int r, int c){if ((r < 0) || (r >= grid.size())){return false;}if ((c < 0) || (c >= grid[0].size())){return false;}return '#' != grid[r][c];};int sr, sc, br, bc,tr,tc;CEnumGrid<char>::EnumGrid(grid, [&](int r, int c, char ch){if ('B' == ch){br = r;bc = c;}if ('S' == ch){sr = r;sc = c;}if ('T' == ch){tr = r;tc = c;}});CBFS4 bfs(m_r, m_c, m_r, m_c);bfs.PushBack(sr, sc, br, bc, 0);int r1, c1, r2, c2;while (bfs.Peek(r1, c1, r2, c2)){const int dis = bfs.Get(r1, c1, r2, c2);if ((r2 == tr) && (c2 == tc)){return dis;}for (const auto& [mr,mc] : move){auto r3 = r1 + mr;auto c3 = c1 + mc;if (!CanMove(r3, c3)){continue;}if ((r3 == r2) && (c3 == c2)){//必须移动箱子auto r4 = r3 + mr;auto c4 = c3 + mc;if (!CanMove(r4, c4)){continue;}bfs.PushBack(r3, c3, r4, c4, dis + 1);}else{bfs.PushFront(r3, c3, r2, c2, dis );}}}return -1;}int m_r, m_c;
};

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<char>> grid;{Solution sln;grid = { {'#','#','#','#','#','#'},{'#','T','#','#','#','#'},{'#','.','.','B','.','#'},{'#','.','#','#','.','#'},{'#','.','.','.','S','#'},{'#','#','#','#','#','#'} };auto res = sln.minPushBox(grid);Assert(3, res);}{Solution sln;grid = { {'#','#','#','#','#','#'},{'#','T','.','.','#','#'},{'#','.','#','B','.','#'},{'#','.','.','.','.','#'},{'#','.','.','.','S','#'},{'#','#','#','#','#','#'} };auto res = sln.minPushBox(grid);Assert(5, res);}
}

想法而已,过于复杂:割点、并集查找

状态:箱子所在行列,人所在方位(上右下左) 。
箱子右移的条件:
人能移到箱子左边,箱子能右移(右边没出界,不是墙)
人可能被箱子阻拦:
{ 如果没箱子,人无法到达 无法到达。 e l s e 箱子不是割点 能到达 e l s e 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 能到达。 o t h e r 不能到达。 \begin{cases} 如果没箱子,人无法到达& 无法到达。\\ else 箱子不是割点 & 能到达 \\ else 是割点,源点和目标点到时间戳都大于(小于)割点时间戳 & 能到达。\\ other & 不能到达。\\ \end{cases} 如果没箱子,人无法到达else箱子不是割点else是割点,源点和目标点到时间戳都大于(小于)割点时间戳other无法到达。能到达能到达。不能到达。

写了下代码,太复杂了。
错误原因:源点和目标点到时间戳都大于(小于)割点时间戳则能到达是错误的。因为:割点可能被多次访问,所以需要记录割点所有的时间戳,在同一个时间段的可以访问。但这要修改割点函数。抱着一根筋精神,改进了割点函数。

代码

class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;}	CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size()){for (int i = 0; i < vNeiBo.size(); i++) {for (const auto& n : vNeiBo[i]) {Union(i, n);}}}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){UnionConnect(iConnectNO1, iConnectNO2);}else{UnionConnect(iConnectNO2, iConnectNO1);}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}vector<int> GetNodeCountOfRegion()//各联通区域的节点数量{const int iNodeSize = m_vNodeToRegion.size();vector<int> vRet(iNodeSize);for (int i = 0; i < iNodeSize; i++){vRet[GetConnectRegionIndex(i)]++;}return vRet;}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:void UnionConnect(int iFrom, int iTo){m_vNodeToRegion[iFrom] = iTo;}vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};class CUnionFindMST
{
public:CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize){}void AddEdge(const int iNode1, const int iNode2, int iWeight){if (m_uf.IsConnect(iNode1, iNode2)){return;}m_iMST += iWeight;m_uf.Union(iNode1, iNode2);}void AddEdge(const vector<int>& v){AddEdge(v[0], v[1], v[2]);}int MST(){if (m_uf.GetConnetRegionCount() > 1){return -1;}return m_iMST;}
private:int m_iMST = 0;CUnionFind m_uf;
};class CUnionFindDirect
{
public:CUnionFindDirect(int iSize){m_vRoot.resize(iSize);iota(m_vRoot.begin(), m_vRoot.end(), 0);}void Connect(bool& bConflic, bool& bCyc, int iFrom, int iTo){bConflic = bCyc = false;if (iFrom != m_vRoot[iFrom]){bConflic = true;}Fresh(iTo);if (m_vRoot[iTo] == iFrom){bCyc = true;}if (bConflic || bCyc){return;}m_vRoot[iFrom] = m_vRoot[iTo];}int GetMaxDest(int iFrom){Fresh(iFrom);return m_vRoot[iFrom];}	
private:int Fresh(int iNode){if (m_vRoot[iNode] == iNode){return iNode;}return m_vRoot[iNode] = Fresh(m_vRoot[iNode]);}vector<int> m_vRoot;
};class CNearestMST
{
public:CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize){}void Init(const vector<vector<int>>& edges){for (const auto& v : edges){Add(v);}}void Add(const vector<int>& v){m_vNeiTable[v[0]].emplace_back(v[1], v[2]);m_vNeiTable[v[1]].emplace_back(v[0], v[2]);}int MST(int start){int next = start;while ((next = AddNode(next)) >= 0);return m_iMST;}int MST(int iNode1, int iNode2, int iWeight){m_bDo[iNode1] = true;for (const auto& it : m_vNeiTable[iNode1]){if (m_bDo[it.first]){continue;}m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);}m_iMST = iWeight;int next = iNode2;while ((next = AddNode(next)) >= 0);return m_iMST;}private:int AddNode(int iCur){m_bDo[iCur] = true;for (const auto& it : m_vNeiTable[iCur]){if (m_bDo[it.first]){continue;}m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);}int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (m_bDo[i]){continue;}if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex])){iMinIndex = i;}}if (-1 != iMinIndex){if (INT_MAX == m_vDis[iMinIndex]){m_iMST = -1;return -1;}m_iMST += m_vDis[iMinIndex];}return iMinIndex;}vector<bool> m_bDo;vector<long long> m_vDis;vector < vector<std::pair<int, int>>> m_vNeiTable;long long m_iMST = 0;
};class CBFSDis
{
public:CBFSDis(vector<vector<int>>& vNeiB, vector<int> start){m_vDis.assign(vNeiB.size(), m_iNotMayDis);queue<int> que;for (const auto& n : start){m_vDis[n] = 0;que.emplace(n);}while (que.size()){const int cur = que.front();que.pop();for (const auto next : vNeiB[cur]){if (m_iNotMayDis != m_vDis[next]){continue;}m_vDis[next] = m_vDis[cur] + 1;que.emplace(next);}}}
public:const int m_iNotMayDis = 1e9;vector<int> m_vDis;
};class C01BFSDis
{
public:C01BFSDis(vector<vector<int>>& vNeiB0, vector<vector<int>>& vNeiB1, int s){m_vDis.assign(vNeiB0.size(), -1);std::deque<std::pair<int, int>> que;que.emplace_back(s, 0);while (que.size()){auto it = que.front();const int cur = it.first;const int dis = it.second;que.pop_front();if (-1 != m_vDis[cur]){continue;}m_vDis[cur] = it.second;for (const auto next : vNeiB0[cur]){if (-1 != m_vDis[next]){continue;}que.emplace_front(next, dis);}for (const auto next : vNeiB1[cur]){if (-1 != m_vDis[next]){continue;}que.emplace_back(next, dis + 1);}}}
public:vector<int> m_vDis;
};
//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:CHeapDis(int n){m_vDis.assign(n, -1);}void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB){std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;minHeap.emplace(0, start);while (minHeap.size()){const long long llDist = minHeap.top().first;const int iCur = minHeap.top().second;minHeap.pop();if (-1 != m_vDis[iCur]){continue;}m_vDis[iCur] = llDist;for (const auto& it : vNeiB[iCur]){minHeap.emplace(llDist + it.second, it.first);}}}vector<long long> m_vDis;
};//朴素迪杰斯特拉算法
class CN2Dis
{
public:CN2Dis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre){}void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB){m_vDis.assign(m_iSize, -1);m_vPre.assign(m_iSize, -1);vector<bool> vDo(m_iSize);//点是否已处理auto AddNode = [&](int iNode){//const int iPreNode = m_vPre[iNode];long long llPreDis = m_vDis[iNode];vDo[iNode] = true;for (const auto& it : vNeiB[iNode]){if (vDo[it.first]){continue;}if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first])){m_vDis[it.first] = it.second + llPreDis;m_vPre[it.first] = iNode;}}long long llMinDis = LLONG_MAX;int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (vDo[i]){continue;}if (-1 == m_vDis[i]){continue;}if (m_vDis[i] < llMinDis){iMinIndex = i;llMinDis = m_vDis[i];}}return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;};int next = start;m_vDis[start] = 0;while (-1 != (next = AddNode(next)));}void Cal(int start, const vector<vector<int>>& mat){m_vDis.assign(m_iSize, LLONG_MAX);m_vPre.assign(m_iSize, -1);vector<bool> vDo(m_iSize);//点是否已处理auto AddNode = [&](int iNode){long long llPreDis = m_vDis[iNode];vDo[iNode] = true;for (int i = 0; i < m_iSize; i++){if (vDo[i]){continue;}const long long llCurDis = mat[iNode][i];if (llCurDis <= 0){continue;}m_vDis[i] = min(m_vDis[i], m_vDis[iNode] + llCurDis);}long long llMinDis = LLONG_MAX;int iMinIndex = -1;for (int i = 0; i < m_iSize; i++){if (vDo[i]){continue;}if (m_vDis[i] < llMinDis){iMinIndex = i;llMinDis = m_vDis[i];}}if (LLONG_MAX == llMinDis){return -1;}m_vPre[iMinIndex] = iNode;return iMinIndex;};int next = start;m_vDis[start] = 0;while (-1 != (next = AddNode(next)));}const vector<long long>& DIS;const vector<int>& PRE;
private:const int m_iSize;vector<long long> m_vDis;//各点到起点的最短距离vector<int>  m_vPre;//最短路径的前一点
};//多源码路径
template<class T, T INF = 1000 * 1000 * 1000>
class CFloyd
{
public:CFloyd(const  vector<vector<T>>& mat){m_vMat = mat;const int n = mat.size();for (int i = 0; i < n; i++){//通过i中转for (int i1 = 0; i1 < n; i1++){for (int i2 = 0; i2 < n; i2++){//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离}}}};vector<vector<T>> m_vMat;
};class CParentToNeiBo
{
public:CParentToNeiBo(const vector<int>& parents){m_vNeiBo.resize(parents.size());for (int i = 0; i < parents.size(); i++){if (-1 == parents[i]){m_root = i;}else{m_vNeiBo[parents[i]].emplace_back(i);}}}vector<vector<int>> m_vNeiBo;int m_root = -1;
};class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class CNeiBo3
{
public:CNeiBo3(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){m_vNeiB.resize(n);AddEdges(edges, bDirect, iBase);}CNeiBo3(int n){m_vNeiB.resize(n);}void AddEdges(vector<vector<int>>& edges, bool bDirect, int iBase = 0){for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}}vector<vector<std::pair<int, int>>> m_vNeiB;
};template<class T, T INF = 1000 * 1000 * 1000>
class CNeiBoToMat
{
public:CNeiBoToMat(int n, const vector<vector<int>>& edges, bool bDirect = false, bool b1Base = false){m_vMat.assign(n, vector<int>(n, INF));for (int i = 0; i < n; i++){m_vMat[i][i] = 0;}for (const auto& v : edges){m_vMat[v[0] - b1Base][v[1] - b1Base] = v[2];if (!bDirect){m_vMat[v[1] - b1Base][v[0] - b1Base] = v[2];}}}vector<vector<int>> m_vMat;
};
class CCutEdge
{
public:CCutEdge(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1);m_vCutEdges.resize(m_iSize);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}m_iRegionCount++;dfs(i, -1, vNeiB);}}bool IsCut(int node1, int node2){return m_vCutEdges[node1].count(node2);}bool IsCut(int node){return m_vCutEdges[node].size();}int RegionCount()const{return m_iRegionCount;}
protected:int dfs(int cur, int parent, const vector<vector<int>>& vNeiB){auto& curTime = m_vTime[cur];curTime = m_iTime++;int iRet = curTime;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){iRet = min(iRet, m_vTime[next]);continue;}int iNextTime = dfs(next, cur, vNeiB);if (iNextTime > curTime){m_vCutEdges[cur].emplace(next);}iRet = min(iRet, iNextTime);}return iRet;}vector<int> m_vTime;int m_iTime = 0;int m_iRegionCount = 0;vector<std::unordered_set<int>> m_vCutEdges;const int m_iSize;
};//割点
class CCutPoint
{
public:CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1);m_vVisitMin.assign(m_iSize, -1);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}m_iRegionCount++;dfs(i, -1, vNeiB);}}int RegionCount()const{return m_iRegionCount;}const vector<int>& CutPoints()const{return m_vCutPoints;}const vector<int>& Tinme()const { return m_vTime; }
protected:void dfs(int cur, int parent, const vector<vector<int>>& vNeiB){auto& curTime = m_vTime[cur];auto& visitMin = m_vVisitMin[cur];curTime = m_iTime++;visitMin = curTime;int iMax = -1;int iChildNum = 0;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){visitMin = min(visitMin, m_vTime[next]);continue;}iChildNum++;dfs(next, cur, vNeiB);visitMin = min(visitMin, m_vVisitMin[next]);iMax = max(iMax, m_vVisitMin[next]);}if (-1 == parent){if (iChildNum >= 2){m_vCutPoints.emplace_back(cur);}}else{if (iMax >= curTime){m_vCutPoints.emplace_back(cur);}}}vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理vector<int> m_vVisitMin;// int m_iTime = 0;int m_iRegionCount = 0;vector<int> m_vCutPoints;const int m_iSize;
};class CTopSort
{
public://vBackNeiBo[1] = {2} 表示 1完成后,才能完成2template<class T >void Init(vector<T>& vPreToNext){m_c = vPreToNext.size();vector<int> vInDeg(m_c);for (int cur = 0; cur < m_c; cur++){for (const auto& next : vPreToNext[cur]){vInDeg[next]++;}}queue<int> que;for (int i = 0; i < m_c; i++){if (0 == vInDeg[i]){que.emplace(i);m_vLeaf.emplace_back(i);OnDo(-1, i);}}while (que.size()){const int cur = que.front();que.pop();for (const auto& next : vPreToNext[cur]){vInDeg[next]--;if (0 == vInDeg[next]){que.emplace(next);OnDo(cur, next);}}};}virtual void OnDo(int pre, int cur) = 0;int m_c;vector<int> m_vLeaf;
};struct CVec
{int r;int c;
};
struct CPos
{	int r = 0, c = 0;int ToMask()const { return s_MaxC * r + c; };bool operator==(const CPos& o)const{return (r == o.r) && (c == o.c);}CPos operator+(const CVec& v)const{return { r + v.r, c + v.c };}CPos operator-(const CVec& v)const{return{ r - v.r, c - v.c };}CVec operator-(const CPos& o)const{return {r - o.r,c- o.c};}inline static  int s_MaxC = 10'000;
};class CRange
{
public:CRange(int rCount, int cCount, std::function<bool(int, int)> funVilidCur):m_r(rCount),m_c(cCount), m_funVilidCur(funVilidCur){}bool Vilid(CPos pos)const{return (pos.r >= 0) && (pos.r < m_r) && (pos.c >= 0) && (pos.c < m_c) && m_funVilidCur(pos.r, pos.c);}const int m_r, m_c;
protected:std::function<bool(int, int)> m_funVilidCur;
};
class  CGridToNeiBo
{
public:static vector<vector<int>> ToNeiBo(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount*preR+preC].emplace_back(r*cCount+ c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}
};template<class T = int>
class CEnumGrid
{
public:	static  void EnumGrid(vector<vector<T>>& grid, std::function<void(int, int, T&)> call){for (int r = 0; r < grid.size(); r++){for (int c = 0; c < grid.front().size(); c++){call(r, c, grid[r][c]);}}}static  void EnumPos(vector<vector<T>>& grid, vector<tuple<T, CPos&>> vRes){EnumGrid(grid, [&vRes](int curR, int curC, T& curV){for (auto& [value, pos] : vRes){if (curV == value){pos = { curR,curC };}}});}inline static const CVec s_Move4[4] = { {1,0},{0,1},{-1,0},{0,-1} };//上右下左enum {UP=0,RIGHT,DOWN,LEFT};
};class CEnumGridEdge
{
public:CEnumGridEdge(int r, int c, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext) :m_r(r), m_c(c){m_funVilidCur = funVilidCur;m_funVilidNext = funVilidNext;m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));Init();}vector<vector<int>> BFS(vector<pair<int, int>> start, const int endr = -1, const int endc = -1){vector<vector<int>> vDis(m_r, vector<int>(m_c, -1));queue<pair<int, int>> que;for (const auto& [r, c] : start){vDis[r][c] = 0;que.emplace(make_pair(r, c));}while (que.size()){const auto [r, c] = que.front();que.pop();for (const auto [nr, nc] : m_vNext[r][c]){if (-1 != vDis[nr][nc]){continue;}vDis[nr][nc] = vDis[r][c] + 1;if ((endr == nr) && (endc == nc)){break;}que.emplace(make_pair(nr, nc));}}return vDis;}const int m_r, m_c;vector < vector < vector<pair<int, int>>>> m_vNext;
protected:void Init(){for (int r = 0; r < m_r; r++){for (int c = 0; c < m_c; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}}void Move(int preR, int preC, int r, int c){if ((r < 0) || (r >= m_r)){return;}if ((c < 0) || (c >= m_c)){return;}if (m_funVilidCur(preR, preC) && m_funVilidNext(r, c)){m_vNext[preR][preC].emplace_back(r, c);}};std::function<bool(int, int)> m_funVilidCur, m_funVilidNext;
};class CBFS
{
public:CBFS(int iStatuCount, int iInit = -1) :m_iStatuCount(iStatuCount), m_iInit(iInit){m_res.assign(iStatuCount, iInit);}bool Peek(int& statu){if (m_que.empty()){return false;}statu = m_que.front();m_que.pop_front();return true;}void PushBack(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_back(statu);}void PushFront(int statu, int value){if (m_iInit != m_res[statu]){return;}m_res[statu] = value;m_que.push_front(statu);}int Get(int statu){return m_res[statu];}
private:const int m_iStatuCount;const int m_iInit;deque<int> m_que;vector<int> m_res;
};class CBFS2 : protected CBFS
{
public:CBFS2(int iStatuCount1, int iStatuCount2, int iInit = -1) :CBFS(iStatuCount1* iStatuCount2, iInit), m_iStatuCount2(iStatuCount2){}bool Peek(int& statu1, int& statu2){int statu;if (!CBFS::Peek(statu)){return false;}statu1 = statu / m_iStatuCount2;statu2 = statu % m_iStatuCount2;return true;}void PushBack(int statu1, int statu2, int value){CBFS::PushBack(statu1 * m_iStatuCount2 + statu2, value);}void PushFront(int statu1, int statu2, int value){CBFS::PushFront(statu1 * m_iStatuCount2 + statu2, value);}int Get(int statu1, int statu2){return CBFS::Get(statu1 * m_iStatuCount2 + statu2);}
private:const int m_iStatuCount2;
};class CBFS3 : protected CBFS2
{
public:CBFS3(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iInit = -1) :CBFS2(iStatuCount1, iStatuCount2* iStatuCount3, iInit), m_iStatuCount3(iStatuCount3){}bool Peek(int& statu1, int& statu2, int& statu3){int statu23;if (!CBFS2::Peek(statu1, statu23)){return false;}statu2 = statu23 / m_iStatuCount3;statu3 = statu23 % m_iStatuCount3;return true;}void PushBack(int statu1, int statu2, int statu3, int value){CBFS2::PushBack(statu1, statu2 * m_iStatuCount3 + statu3, value);}void PushFront(int statu1, int statu2, int statu3, int value){CBFS2::PushFront(statu1, statu2 * m_iStatuCount3 + statu3, value);}int Get(int statu1, int statu2, int statu3){return CBFS2::Get(statu1, statu2 * m_iStatuCount3 + statu3);}const int m_iStatuCount3;
};class CBFS4 : protected CBFS3
{
public:CBFS4(int iStatuCount1, int iStatuCount2, int iStatuCount3, int iStatuCount4, int iInit = -1) :CBFS3(iStatuCount1, iStatuCount2, iStatuCount3* iStatuCount4, iInit), m_iStatuCount4(iStatuCount4){}bool Peek(int& statu1, int& statu2, int& statu3, int& statu4){int statu34;if (!CBFS3::Peek(statu1, statu2, statu34)){return false;}statu3 = statu34 / m_iStatuCount4;statu4 = statu34 % m_iStatuCount4;return true;}void PushBack(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushBack(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}void PushFront(int statu1, int statu2, int statu3, int statu4, int value){CBFS3::PushFront(statu1, statu2, statu3 * m_iStatuCount4 + statu4, value);}int Get(int statu1, int statu2, int statu3, int statu4){return CBFS3::Get(statu1, statu2, statu3 * m_iStatuCount4 + statu4);}const int m_iStatuCount4;
};class CCutPointEx
{
public:CCutPointEx(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vTime.assign(m_iSize, -1);	m_vCutRegion.resize(m_iSize);m_vNodeToRegion.assign(m_iSize,-1);m_vCut.assign(m_iSize, false);for (int i = 0; i < m_iSize; i++){if (-1 != m_vTime[i]){continue;}dfs(i, -1, vNeiB);m_iRegionCount++;}}bool Visit(int src, int dest, int iCut){if (m_vNodeToRegion[src] != m_vNodeToRegion[dest]){return false;//不在一个连通区域}if (!m_vCut[iCut]){return true;}const int r1 = GetCutRegion(iCut,src);const int r2 = GetCutRegion(iCut, dest);return r1 == r2;}
protected:int dfs(int cur, int parent, const vector<vector<int>>& vNeiB){		auto& curTime = m_vTime[cur];			m_vNodeToRegion[cur] = m_iRegionCount;curTime = m_iTime++;		int iCutChild=0;int iMinTime = curTime;for (const auto& next : vNeiB[cur]){if (next == parent){continue;}if (-1 != m_vTime[next]){iMinTime = min(iMinTime, m_vTime[next]);continue;}			int iChildBeginTime = m_iTime;const int iChildMinTime = dfs(next, cur, vNeiB);iMinTime = min(iMinTime, iChildMinTime);if (iChildMinTime >= curTime){iCutChild++;m_vCutRegion[cur].push_back({ iChildBeginTime,m_iTime });};}m_vCut[cur] = (iCutChild + (-1 != parent)) >= 2;return iMinTime;}	int GetCutRegion(int iCut, int iNode)const {const auto& v = m_vCutRegion[iCut];auto it = std::upper_bound(v.begin(), v.end(), m_vTime[iNode],[](int time, const std::pair<int, int>& pr) {return time < pr.first; });if (v.begin() == it){return v.size();}--it;return (it->second > m_vTime[iNode]) ? (it - v.begin()) : v.size();}int m_iTime = 0;	const int m_iSize;int m_iRegionCount=0;vector<int> m_vTime;//各节点到达时间,从0开始。 -1表示未处理vector<bool> m_vCut;vector<int> m_vNodeToRegion;vector<vector<pair<int,int>>> m_vCutRegion;
};class Solution {
public:int minPushBox(vector<vector<char>>& grid) {		auto Vilid = [&](int r, int c) {return '#' != grid[r][c]; };CRange range(grid.size(), grid.front().size(), Vilid);	CPos::s_MaxC = range.m_c;		auto neiBo = CGridToNeiBo::ToNeiBo(range.m_r, range.m_c, Vilid, Vilid);		CCutPointEx cutPoint(neiBo);auto Visit = [&](CPos s, CPos d, CPos b){			return range.Vilid(d) && cutPoint.Visit(s.ToMask(),d.ToMask(),b.ToMask());};CBFS3 bfs(range.m_r, range.m_c, 4);CPos sInit,tInit,bInit;CEnumGrid<char>::EnumPos(grid, { { 'B',bInit },{'T',tInit},{'S',sInit} });auto MovePeo = [&](CPos peo, CPos bCur, int iCurDis)		{for (int i = 0; i < 4; i++) {if (Visit(peo, bCur + CEnumGrid<>::s_Move4[i], bCur)) {bfs.PushFront(bCur.r, bCur.c, i, iCurDis);}}};MovePeo(sInit, bInit, 0);int br1, bc1, pd;while (bfs.Peek(br1, bc1, pd))		{CPos bCur = { br1,bc1 };CPos peo = bCur + CEnumGrid<>::s_Move4[pd];const int CurDis = bfs.Get(br1, bc1, pd);if (bCur == tInit )			{return CurDis;	}	MovePeo(peo, bCur, CurDis);auto dest = bCur - CEnumGrid<>::s_Move4[pd];if (range.Vilid(dest)){bfs.PushBack(dest.r, dest.c, pd, CurDis + 1);}}			return -1;}
};

2023年4月

class CGridCanVisit
{
public:
CGridCanVisit(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c,INT_MAX/2));
Dist(r, c);
}
bool Vilid(const int r,const int c )
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}
que.emplace(r, c);
m_vDis[r][c] = iDis;
vHasDo[r][c] = true;
};
Add(r, c, 0);
while (que.size())
{
const int r = que.front().first;
const int c = que.front().second;
que.pop();
const int iDis = m_vDis[r][c];
Add(r + 1, c, iDis + 1);
Add(r - 1, c, iDis + 1);
Add(r, c + 1, iDis + 1);
Add(r, c - 1, iDis + 1);
}
}
vector<vector> m_vDis;
const int m_r;
const int m_c;
};
class Solution {
public:
int minPushBox(vector<vector>& grid) {
std::pair<int, int> pB, pS, pT;
m_r = grid.size();
m_c = grid[0].size();
vector<vector> vCanVisit(m_r, vector(m_c));
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
const char ch = grid[r][c];
if (‘S’ == ch)
{
pS = std::make_pair(r, c);
}
else if (‘T’ == ch)
{
pT = std::make_pair(r, c);
}
else if (‘B’ == ch)
{
pB = std::make_pair(r, c);
}
vCanVisit[r][c] = ‘#’ != ch;
}
}
std::unordered_set vHasDo;
std::queue<std::tuple<int, int, int, int>> que;
auto Add = [&](int r, int c, int iSR, int iSC)
{
const int iMask = r * 100 * 100 * 100 + c * 100 * 100 + iSR * 100 + iSC;
if (vHasDo.count(iMask))
{
return;
}
vHasDo.insert(iMask);
que.emplace(r, c, iSR, iSC);
};
auto Move = [&]( CGridCanVisit& gc,int r, int c, int iOldR, int iOldC, int iSR, int iSC)
{
if (!gc.Vilid(r, c))
{
return;//非法行列好
}
if (!gc.m_bCanVisit[r][c])
{//rc是墙无法推动
return;
}
auto vDis = gc.Dis();
const int r2 = iOldR * 2 - r;
const int c2 = iOldC * 2 - c;
if (!gc.Vilid(r2, c2))
{
return;
}
if (vDis[r2][c2] >= 1000 * 1000)
{
return;//人没有地方占,无法推
}
Add(r, c, iOldR, iOldC);
};
std::queue<std::tuple<int, int, int, int>> preQue;
preQue.emplace(pB.first, pB.second, pS.first, pS.second);
for (int i = 0; preQue.size(); i++ )
{
while (preQue.size())
{
auto cur = preQue.front();
if ((get<0>(cur) == pT.first) && (get<1>(cur) == pT.second))
{
return i;
}
preQue.pop();
auto tmp = vCanVisit;
tmp[get<0>(cur)][get<1>(cur)] = false;
CGridCanVisit gc(tmp, get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)+1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur)-1, get<1>(cur), get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)+1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
Move(gc, get<0>(cur), get<1>(cur)-1, get<0>(cur), get<1>(cur), get<2>(cur), get<3>(cur));
}
preQue.swap(que);
}
return -1;
}
int m_r;
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/695103.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

S281 LoRa网关助力智慧城市建设的智能交通管理

S281 LoRa网关作为智慧城市建设中的重要组成部分&#xff0c;发挥着关键的作用&#xff0c;特别是在智能交通管理方面。通过连接各类传感器设备和物联网终端&#xff0c;S281 LoRa网关实现了对城市交通系统的远程监控、智能调度和信息化管理&#xff0c;为城市交通管理部门提供…

Python hasattr函数

在Python编程中&#xff0c;hasattr()函数是一个非常有用的内置函数之一&#xff0c;用于检查对象是否具有指定的属性或方法。这个函数能够帮助我们在运行时动态地检查对象的属性和方法&#xff0c;从而避免由于缺少属性或方法而导致的异常。本文将深入探讨Python中的hasattr()…

C++入门学习(三十二)二维数组定义方式

一维数组类似于一条“线”&#xff0c;而二维数组类似于一个“面”&#xff0c;二维数组也更像一个表格&#xff0c;由我们在“表格”中查询数据。 1、先定义数组&#xff0c;后赋值 int arr[2][3]; #include <iostream> using namespace std;int main() { int arr…

线性代数:线性方程组解的结构

目录 齐次/非齐次方程组的解 Ax 0 的解的性质 定理 Ax b 的解的性质 相关证明 例1 例2 例3 齐次/非齐次方程组的解 Ax 0 的解的性质 定理 Ax b 的解的性质 相关证明 例1 例2 例3

渗透测试—信息收集

渗透测试—信息收集 1. 收集域名信息1.1. 域名注册信息1.2. SEO信息收集1.3. 子域名收集1.3.1. 在线子域名收集1.3.2. 子域名收集工具 1.4. 域名备案信息1.5. ICP备案号查询1.6. SSL证书查询 2. 收集真实IP2.1. 超级ping2.2. Ping2.3. CDN绕过 3. 收集旁站或C段IP3.1. 旁站或C段…

Nginx-----------高性能的 Web服务端 location 优先级(二)

一、event事件 events {worker_connections 65536; #设置单个工作进程的最大并发连接数use epoll;#使用epoll事件驱动&#xff0c;Nginx支持众多的事件驱动&#xff0c;比如:select、poll、epoll&#xff0c;只能设置在events模块中设置。accept_mutex on; #on为同一时刻一个…

学习笔记-Git

Git 问题一描述解决方法注意事项 问题一 描述 在commit和push的时候因为网络太慢了中途强行关闭了进程&#xff0c;而push的内容因为文件过大导致无法正常push 按照原本的流程在push的时候会提示失败&#xff0c;并且需要在解决了大文件之后重新push 而因为中途中断了&#x…

异常统一处理:BusinessException(自定义业务异常)

一、引言 本篇内容是“异常统一处理”系列文章的重要组成部分&#xff0c;主要聚焦于对 BusinessException 的原理解析与异常处理机制&#xff0c;并给出测试案例。 关于 全局异常统一处理 的原理和完整实现逻辑&#xff0c;请参考文章&#xff1a; 《SpringBoot 全局异常统一…

云性能测试方法:优化应用性能的关键步骤

随着云计算的普及和应用程序的不断发展&#xff0c;对于云平台上应用程序性能的测试变得愈发重要。云性能测试方法是评估应用程序在云环境中的性能表现并识别改进机会的关键步骤之一。在本文中&#xff0c;我们将探讨云性能测试的方法和步骤&#xff0c;以帮助开发人员和测试人…

挑战杯 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

文章目录 0 简介1 常用的分类网络介绍1.1 CNN1.2 VGG1.3 GoogleNet 2 图像分类部分代码实现2.1 环境依赖2.2 需要导入的包2.3 参数设置(路径&#xff0c;图像尺寸&#xff0c;数据集分割比例)2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)2.5 数据预…

使用Templ进行Go模板化

使用Templ在Go项目中高效生成动态内容的指南 动态内容生成是Web开发的一个基本方面。无论您是在构建网站、Web应用程序还是API&#xff0c;根据数据和模板生成动态内容的能力都至关重要。在Go编程世界中&#xff0c;一个名为“Templ”的强大工具简化了这一过程。在这份全面的指…

Query Rewrite —— 基于大模型的query扩展改写,PRF(论文)

本文介绍了一篇典型的 PRF &#xff08;Pseudo-relevance feedback &#xff09;思路的论文&#xff0c;用于利用LLM来做query改写&#xff0c;提升召回率&#xff0c;召回效果。 论文地址&#xff1a;Large Language Models are Strong Zero-Shot Retriever 一、PRF的流程 如…

DPDK应该如何入门学习?

01 写在前面 我的读者当中应该有一部分人是做 DPDK 相关的&#xff0c;我自己虽然现在已经不做 DPDK 了&#xff0c;但对这块仍然有兴趣&#xff0c;今天这篇文章就来总结下 DPDK 的技术栈。注意&#xff1a;这篇文章是小白文&#xff0c;不适合大神哦。 文章从 DPDK 的产生背…

Qt应用软件【协议篇】MQTT官方源码编译安装

文章目录 QT官方代码选择对应的版本Qt Creator编译代码代码下载与编译安装mqtt命令行方式编译与安装代码示例QT官方代码 https://github.com/qt/qtmqtt/tree/5.15.2 选择对应的版本 我们可以在github上切换分支,切换到我们需要的版本上 Qt Creator编译代码 代码下载与编译…

【Godot4自学手册】第十五节碰撞层Layer和Mas的使用

上一节中我学习了敌人的攻击&#xff0c;这一节将学习一些碰撞的有关知识。开始今天的学习。 一、碰撞层基本使用知识 在Godot4中的Collsion属性中有Layer和Mask两个属性&#xff0c;用于定义碰撞过滤的重要参数&#xff0c;它们可以允许控制哪些物体可以与该节点进行碰撞检测…

亚信安慧AntDB数据库为实时流数据构筑坚实防线

在数字化浪潮中&#xff0c;企业对实时流数据处理的依赖日益增强。在此背景下&#xff0c;AntDB数据库应运而生&#xff0c;提供一种创新性解决方案&#xff0c;专注于解决实时流数据处理中的数据容灾和一致性问题。AntDB的设计理念是确保在处理高吞吐量的流数据时&#xff0c;…

SICTF Round#3 の WP

Misc 签到 SICTF{1f4ce05a-0fed-42dc-9510-6e76dff8ff53} Crypto [签到]Vigenere 附件内容&#xff1a; Gn taj xirly gf Fxgjuakd, oe igywnd mt tegbs mnrxxlrivywd sngearbsw wakksre. Bs kpimj gf tank, it bx gur bslenmngn th jfdetagur mt ceei yze Ugnled Lystel t…

使用JDBC操作数据库(IDEA编译器)

目录 JDBC的本质 ​ JDBC好处 JDBC操作MySQL数据库 1.创建工程导入驱动jar包 2.编写测试代码 ​相关问题 JDBC的本质 官方(sun公司) 定义的一套操作所有关系型数据库的规则&#xff0c;即接口各个数据库厂商去实现这套接口&#xff0c;提供数据库驱动jar包我们可以使用这…

国际阿里云,想要使用怎么解决支付问题

在国内我们很多时候都需要用到国际阿里云&#xff0c;在国际阿里云需要使用就需要支付&#xff0c;自己办理visa卡比较麻烦&#xff0c;那么我们可以使用虚拟卡&#xff0c;虚拟卡办理快速简单 真实测评使用Fomepay的5347支持国际阿里云的支付&#xff0c;秒下卡&#xff0c;不…

(HAL)STM32F407ZGT6——24-1 IIC实验

一、I2C简介 对比串口通信&#xff0c;从全双工转为半双工&#xff0c;有应答&#xff0c;一根线可以同时接多个模块&#xff0c;单片机可以选择与特定模块通信&#xff0c;并且不会相互干扰。 简而言之&#xff0c;I2C为同步、串行、半双工的通信总线协议。 1、为何SDA与SCL使…