YOLOv5代码解读[02] models/yolov5l.yaml文件解析

文章目录

  • YOLOv5代码解读[02] models/yolov5l.yaml文件解析
    • yolov5l.yaml文件
    • 检测头1--->耦合头
    • 检测头2--->解耦头
    • 检测头3--->ASFF检测头
    • Model类解析
    • parse_model函数

YOLOv5代码解读[02] models/yolov5l.yaml文件解析

yolov5l.yaml文件

在这里插入图片描述

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 27  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors, False]],  # Detect(P3, P4, P5)]

检测头1—>耦合头

class Detect(nn.Module):stride = None  onnx_dynamic = Falseexport = Falsedef __init__(self, nc=80, anchors=(), Decoupled=False, ch=(), inplace=True):  super().__init__()# 是否解耦头self.decoupled = Decoupled# 类别数目self.nc = nc  # 每个anchor输出维度 self.no = nc + 5  # 检测层的输出数量(不同尺度个数) self.nl = len(anchors)  # 每个尺度特征图的anchor数量self.na = len(anchors[0]) // 2  # 初始化步长init gridself.grid = [torch.zeros(1)] * self.nl    # 初始化anchor gridself.anchor_grid = [torch.zeros(1)] * self.nl  # self.register_buffer("a", torch.ones(2,3))  # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,# 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)# 检测头head输出卷积# 如果是解耦头if self.decoupled:self.m = nn.ModuleList(DecoupledHead(x, self.nc, anchors) for x in ch) # 如果是耦合头else:self.m = nn.ModuleList(nn.Conv2d(x, self.no*self.na, 1) for x in ch) # use in-place ops (e.g. slice assignment)self.inplace = inplace  def forward(self, x):# inference outputz = []# 对于每个尺度的特征图来说for i in range(self.nl):# conv# P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]# P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]# P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]x[i] = self.m[i](x[i])# 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)bs, _, ny, nx = x[i].shapex[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()# 推断过程inferenceif not self.training:# self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:# 中心点xy 网格gridy[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]# 长宽wh  锚anchor_gridy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]else:xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)# # 转成caffe时候的代码# def forward(self, x):#     # inference output#     z = []#     # 对于每个尺度的特征图来说#     for i in range(self.nl):#         # conv#         # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]#         # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]#         # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]#         x[i] = self.m[i](x[i])#         # y = x[i]#         y = x[i].sigmoid()#         z.append(y)#     return zdef _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):d = self.anchors[i].devicet = self.anchors[i].dtypey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)# torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityif torch_1_10:yv, xv = torch.meshgrid(y, x, indexing='ij')else:yv, xv = torch.meshgrid(y, x)# 网格grid (x, y)# x[i] --> (bs,3,ny,nx,85)# grid --> (1,3,ny,nx,2)grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2))# 锚anchor (w, h)# x[i] --> (bs,3,ny,nx,85)# anchor_grid --> (1,3,ny,nx,2)# self.stride: tensor([ 8., 16., 32.])anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2))return grid, anchor_grid

检测头2—>解耦头

class DecoupledHead(nn.Module):def __init__(self, ch=256, nc=80, anchors=()):super().__init__()# 类别个数self.nc = nc# 检测层的数量self.nl = len(anchors)# 每一层anchor个数self.na = len(anchors[0]) // 2self.merge = Conv(ch, 128 , 1, 1)  # 默认256self.cls_convs1 = Conv(128, 64, 3, 1, 1)self.cls_convs2 = Conv(64, 64, 3, 1, 1)self.reg_convs1 = Conv(128, 64, 3, 1, 1)self.reg_convs2 = Conv(64, 64, 3, 1, 1)self.cls_preds = nn.Conv2d(64 , self.nc*self.na, 1)self.reg_preds = nn.Conv2d(64 , 4*self.na, 1)self.obj_preds = nn.Conv2d(64 , 1*self.na, 1)def forward(self, x):x = self.merge(x)x1 = self.cls_convs1(x)x1 = self.cls_convs2(x1)x1 = self.cls_preds(x1)x2 = self.reg_convs1(x)x2 = self.reg_convs2(x2)x21 = self.reg_preds(x2)x22 = self.obj_preds(x2)out = torch.cat([x21, x22, x1], 1)return out

检测头3—>ASFF检测头

class ASFF_Detect(nn.Module):  stride = None  onnx_dynamic = False   def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True):  super().__init__()# 类别数目self.nc = nc  # 每个anchor输出维度self.no = nc + 5  # 检测层的输出数量(不同尺度个数) self.nl = len(anchors) # 每个尺度特征图的anchor数量self.na = len(anchors[0]) // 2  # 初始化步长init gridself.grid = [torch.zeros(1)] * self.nl  # init anchor gridself.anchor_grid = [torch.zeros(1)] * self.nl# self.register_buffer("a", torch.ones(2,3))  # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,# 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)# ASFF模块self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)# 检测头head输出卷积self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # use in-place ops (e.g. slice assignment)self.inplace = inplace  def forward(self, x):# inference outputz = []  result = []result.append(self.l2_fusion(x))result.append(self.l1_fusion(x))result.append(self.l0_fusion(x))x = result    # 对于每个尺度的特征图来说for i in range(self.nl):# conv # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]# P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]# P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]x[i] = self.m[i](x[i])  # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)bs, _, ny, nx = x[i].shape  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()# 推断过程inference if not self.training:  # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()# 这块xy的计算存在大量疑惑?????????????????????????if self.inplace:# 中心点xy 网格gridy[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # 长宽wh  锚anchor_gridy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])# 网格grid (x, y)# x[i] --> (bs,3,ny,nx,85)# grid --> (1,3,ny,nx,2)grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()# 锚anchor (w, h)# x[i] --> (bs,3,ny,nx,85)# anchor_grid --> (1,3,ny,nx,2)# self.stride: tensor([ 8., 16., 32.])anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid

Model类解析

class Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  super().__init__()# 字典dict类型if isinstance(cfg, dict):self.yaml = cfg  # yaml文件else: self.yaml_file = Path(cfg).name# 用ascii编码,忽略错误的形式打开文件cfgwith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # 输入通道ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # 重写yaml文件中的ncif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # 重写yaml文件中的anchors if anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # 根据yaml文件的model_dict解析模型self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # 默认类别名字 从0到nc-1self.names = [str(i) for i in range(self.yaml['nc'])] self.inplace = self.yaml.get('inplace', True)# 设置Detect()中的inplace, stride, anchorsm = self.model[-1]  if isinstance(m, Detect) or isinstance(m, ASFF_Detect):s = 256m.inplace = self.inplace# 根据前向传播forward 计算步长stridem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])# 把anchors放缩到了3个不同的尺度# 这块的形状为什么这样变化??????m.anchors /= m.stride.view(-1, 1, 1)# 根据YOLOv5 Detect()模块m的步幅顺序检查给定锚框顺序,必要时进行纠正。check_anchor_order(m)self.stride = m.strideif m.decoupled:LOGGER.info('decoupled done')pass else:self._initialize_biases()  # only run once  # 初始化权重weights和偏置biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):# 推断时增强augmented inferenceif augment:return self._forward_augment(x)  # 单尺度推断single-scale inference 或者训练trainreturn self._forward_once(x, profile, visualize)  def _forward_augment(self, x):# height, widthimg_size = x.shape[-2:]  s = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  for m in self.model:# 输入不是来自于上一个层的输出if m.f != -1:  x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]if profile:self._profile_one_layer(m, x, dt)# 计算输出x = m(x)y.append(x if m.i in self.save else None) # 特征可视化if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # mi--> Conv2d(128, 255, kernel_size=(1, 1), stride=(1, 1)) # s --> tensor(8.)for mi, s in zip(m.m, m.stride):  # conv.bias(255) to (3,85)b = mi.bias.view(m.na, -1)  b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  for mi in m.m:  b = mi.bias.detach().view(m.na, -1).T  LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))def _print_weights(self):for m in self.model.modules():if type(m) is Bottleneck:LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef info(self, verbose=False, img_size=640):  # 打印模型信息model_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect) or isinstance(m, ASFF_Detect) or isinstance(m, Decoupled_Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self

parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")# nc:类别数; gd:'depth_multiple'; gw:'width_multiple'anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']# anchor数目, 每层为3na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # 每层的输出,na*(classes+5)no = na * (nc + 5)  # layers, savelist, ch_outlayers, save, c2 = [], [], ch[-1] # from, number, module, args# 以[-1, 1, Conv, [64, 6, 2, 2]为例, ch=[3], f=-1, n=1, m=Conv, args=[64, 6, 2, 2]#   [-1, 1, Conv, [128, 3, 2]#   [-1, 3, C3, [128]]#   [-1, 1, SPPF, [1024, 5]]#   [-1, 1, nn.Upsample, [None, 2, 'nearest']]#   [[-1, 6], 1, Concat, [1]]#   [-1, 3, C3, [512, False]]for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):# 把strings转为本身的类型m = eval(m) if isinstance(m, str) else m  for j, a in enumerate(args):try:# 列表形式args[j] = eval(a) if isinstance(a, str) else a  except NameError:pass# depth_gain 深度缩放因子n = n_ = max(round(n*gd), 1) if n > 1 else n # 对于不同类型的卷积模块   if m in [Conv, DWConv,  CrossConv, GhostConv, Bottleneck, GhostBottleneck,BottleneckCSP, MobileBottleneck, SPP, SPPF, MixConv2d, Focus,InvertedResidual, ConvBNReLU, C3, C3TR, C3SPP, C3Ghost, CoordAtt,CoordAttv2, OSA_Stage]:# i=0, c1=3,  c2=64;  # i=1, c1=32, c2=128;  # i=2, c1=64, c2=128;# c1输入通道;c2输出通道;c1, c2 = ch[f], args[0]# width_gain 宽度缩放因子# 说明不是输出if c2 != no:  # 输出通道数必须为8的倍数c2 = make_divisible(c2*gw, 8)# i=0, [3,  32, 6, 2, 2]# i=1, [32, 64, 3, 2]# i=2, [64, 64]args = [c1, c2, *args[1:]]# 堆叠次数number of repeats# 注意网络设计理念:stage ---> block ---> layerif m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  n = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is ASFF_Detect :args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif m is ConvNeXt_Block:c2 = args[0]args = args[1:]else:c2 = ch[f]# module# Conv(3, 32, 6, 2, 2]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # m ===> <class 'models.common.Conv'># str(m)[8:-2] ===> models.common.Convt = str(m)[8:-2].replace('__main__.', '')  # 参数(parameters)/模型参数, 由模型通过学习得到的变量,比如权重和偏置.# m_.parameters(): <generator object Module.parameters at 0x7fcf4c2059d0>np = sum(x.numel() for x in m_.parameters()) # attach index, 'from' index, type, number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # savelist  [6, 4, 14, 10, 17, 20, 23]save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # layers列表layers.append(m_)if i == 0:ch = []# ch列表ch.append(c2)return nn.Sequential(*layers), sorted(save)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA SERDESE2 (SDR收发仿真)

高速 Serdes 环路测试 高速串行通信优势非常巨大,只需要很少的IO引脚就可以实现高速通信,这也是当今FPGA高速接口的核心 技术。比如XILINX的7代FPGA,GTX可以达到10.3125Gbps,ultrascale FPGA的GTH可以达到16Gbps。目前国产FPGA还难以达到这么高的接口速度。 高速串行通信经…

社区分享|中华保险基于MeterSphere开展接口自动化测试

中华联合保险集团股份有限公司&#xff08;以下简称为“中华保险”&#xff09;始创于1986年&#xff0c;是全国唯一一家以“中华”冠名的国有控股保险公司。截至2022年12月底&#xff0c;中华保险总资产为1006.06亿元&#xff0c;在全国拥有超过2900个营业网点&#xff0c;员工…

Servlet中的请求与响应

Request和Response 1.Request和Response的概述2.Request对象2.1 Request继承体系2.2 Request获取请求数据2.3 解决post请求乱码问题 *2.4 Request请求转发(-&#xff0c;*)2.5 request的生命周期 3.HTTP响应详解(理解)1.使用抓包查看响应报文协议内容2.HTTP响应报文协议介绍 4.…

汇编英文全称

mov move mvn Mov Negative ldr LoaD Register str Store Register lsl Logic Shift Left lsr Logic Shift Right asr Arithmetic Shift Right 算数右移 ror Rotate right 循环右移…

人工智能讲师AI讲师大模型讲师叶梓介绍及大语言模型技术原理与实践提纲

叶梓&#xff0c;上海交通大学计算机专业博士毕业&#xff0c;高级工程师。主研方向&#xff1a;数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家&#xff0c;市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的建设工作&#xff…

angular-引用本地json文件

angular-引用json文件&#xff0c;本地模拟数据时使用 在assets目录下存放json文件 大佬们的说法是&#xff1a;angular配置限定了资源文件的所在地&#xff08;就是assets的路径&#xff09;&#xff0c;放在其他文件夹中&#xff0c;angular在编译过程中会忽略&#xff0c;会…

云计算的两地三中心和灾备介绍

两地三中心是指在不同的地理位置建立两个数据中心和一个灾备中心&#xff0c;其中一个数据中心为主数据中心&#xff0c;另一个数据中心为备用数据中心&#xff0c;灾备中心则用于备份数据和在主数据中心或备用数据中心发生故障或灾难时提供应急支持。 异地灾备则是指在不同的地…

Docker之查看并获取最新Ubuntu镜像(十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

基于springboot+vue的教学资源库系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Nginx配置组成与性能调优

目录 一、Nginx配置介绍 1. 模块组成 2. 图示 3. 相关框架 二. 配置调优 1. 全局配置 1.1 关闭版本和修改版本 1.2 修改启动的进程数 1.3 cpu与work进程绑定 1.4 pid路径 1.5 nginx进程的优先级&#xff08;work进程的优先级&#xff09; 1.6 调试work进程打开的文…

利用System.Web.HttpRuntime.Cache制作缓存工具类

用到的依赖介绍 当谈到 ASP.NET 中的缓存管理时&#xff0c;常涉及到以下三个类&#xff1a;CacheDependency、HttpRuntime.Cache 和 System.Web.Caching。 CacheDependency&#xff08;缓存依赖项&#xff09;&#xff1a; CacheDependency 类用于指定一个或多个文件或目录作…

问题:Spark SQL 读不到 Flink 写入 Hudi 表的新数据,打开新 Session 才可见

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

Predis Multi-Zone

A Data Flow Framework with High Throughput and Low Latency for Permissioned Blockchains 联盟链的吞吐瓶颈由共识层和网络层的数据分发过程共同决定。 Predis 协议利用了共识节点的空闲带宽&#xff0c;提前分发区块中的内容即bundle&#xff0c;减少了共识区块中的内容&…

在vue3中使用canvas实现雨滴效果

在vue3中使用canvas实现雨滴效果 这是封装的一个组件DotAndRain&#xff08; &#xff09; <script setup> import { ref, onMounted } from "vue"; import { onUnmounted } from "vue";let animationFrameId null;const el ref(null); let canv…

5 原型模式 Prototype

1.模式定义: 指原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象 2.应用场景&#xff1a; 当代码不应该依赖于需要复制的对象的具体类时&#xff0c;请使用Prototype模式。 Spring源码中的应用 org.springframework.beans.factory.support.AbstractB…

QT 如何让多语言翻译变得简单,提高效率?

一.QT多语言如何翻译的? 在QT的多语言翻译过程中,分为两个步骤:第一步生成ts文件,第二步将ts文件翻译为qm文件。如果我们在需要多语言的情况下,qml经常使用qstr或者qwidget中使用tr等等,遍布许多个文件夹,在需要更新新的翻译时会很麻烦。整个工程收索并修改,效率十分低…

vue3 #ref #reactive

一、ref 函数将简单类型的数据包装为响应式数据 import { ref } from vue const count ref(10) 一、reactive函数将复杂类型的数据包装为响应式数据 import { reactive} from vue const obj reactive({ name : zs&#xff0c; age : 18 })

蓝桥杯嵌入式第12届真题(完成) STM32G431

蓝桥杯嵌入式第12届真题(完成) STM32G431 题目 程序 main.c /* USER CODE BEGIN Header */ /********************************************************************************* file : main.c* brief : Main program body**************************…

【LeetCode-198】打家劫舍(回溯动归)

目录 解法1&#xff1a;记忆回溯 代码实现 解法2&#xff1a;动态规划 代码实现 题目链接 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相…

Linux常见的指令

目录 01. ls 指令02. pwd命令03. cd 指令04. touch指令05.mkdir指令&#xff08;重要&#xff09;&#xff1a;06.rmdir指令 && rm 指令&#xff08;重要&#xff09;&#xff1a;07.man指令&#xff08;重要&#xff09;&#xff1a;08.cp指令&#xff08;重要&#x…