C# 使用onnxruntime部署夜间雾霾图像的可见度增强

目录

介绍

模型信息

效果

项目

代码

下载


C# Onnx 使用onnxruntime部署夜间雾霾图像的可见度增强

介绍

github地址:GitHub - jinyeying/nighttime_dehaze: [ACMMM2023] "Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradient Adaptive Convolution", https://arxiv.org/abs/2308.01738

[ACMMM2023] "Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradient Adaptive Convolution",

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

效果

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;
        float[] result_array;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "正在运行,请稍后……";
            Application.DoEvents();

            image = new Mat(image_path);
            int srch = image.Rows;
            int srcw = image.Cols;
          
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(512, 512));

            Common.Normalize(resize_image);

            float[] data=  Common.ExtractMat(resize_image);

            // 输入Tensor
            input_tensor = new DenseTensor<float>(data,new[] { 1, 3, 512, 512 });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            int out_h = 512;
            int out_w = 512;

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(result_array, temp_r, out_h * out_w);
            Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;

            model_path = "model/nighttime_dehaze_realnight_1x3x512x512.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
           
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/038.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;float[] result_array;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "正在运行,请稍后……";Application.DoEvents();image = new Mat(image_path);int srch = image.Rows;int srcw = image.Cols;Mat resize_image = new Mat();Cv2.Resize(image, resize_image, new OpenCvSharp.Size(512, 512));Common.Normalize(resize_image);float[] data=  Common.ExtractMat(resize_image);// 输入Tensorinput_tensor = new DenseTensor<float>(data,new[] { 1, 3, 512, 512 });//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();int out_h = 512;int out_w = 512;float[] temp_r = new float[out_h * out_w];float[] temp_g = new float[out_h * out_w];float[] temp_b = new float[out_h * out_w];Array.Copy(result_array, temp_r, out_h * out_w);Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r);Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g);Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b);result_image = new Mat();Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));result_image.ConvertTo(result_image, MatType.CV_8UC3);pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/nighttime_dehaze_realnight_1x3x512x512.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/038.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何修改unity的背景颜色

要在Unity中将背景颜色设为黑色&#xff0c;可以按照以下步骤进行&#xff1a; 1、在Unity编辑器中&#xff0c;选择你想要修改背景颜色的摄像机对象&#xff08;一般是Main Camera&#xff09;。 2、在Inspector面板中&#xff0c;找到"Clear Flags"&#xff08;清…

ChatGPT 4.0 升级指南

1.ChatGPT 是什么&#xff1f; ChatGPT 是由 OpenAI 开发的一种基于人工智能的聊天机器人&#xff0c;它基于强大的语言处理模型 GPT&#xff08;Generative Pre-trained Transformer&#xff09;构建。它能够理解人类语言&#xff0c;可以为我们解决实际的问题。 1.模型规模…

计网 - 域名解析的工作流程

文章目录 Pre引言1. DNS是什么2. 域名结构3. 域名解析的工作流程4. 常见的DNS记录类型5. DNS安全6. 未来的发展趋势 Pre 计网 - DNS 域名解析系统 引言 在我们日常使用互联网时&#xff0c;经常会输入各种域名来访问网站、发送电子邮件或连接其他网络服务。然而&#xff0c;我…

Java中的关键字

✨✨ 所属专栏&#xff1a; Java基石&#xff1a;深入探索Java核心基础✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; Java中的关键字是一些具有特殊含义的单词&#xff0c;它们在语法中有特定的用途&#xff0c;不能用作标识符&am…

[力扣 Hot100]Day32 随机链表的复制

题目描述 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新节点组成&#xff0c;其中每个新节点的值都设为其对应的原节点的值。新…

论文导读 | 因式分解数据库

背景和问题定义 在传统的关系型数据库中&#xff0c;二维表格形式容易造成信息的冗余。如果我们将数据库中的每条元组看成单项式&#xff0c;一个关系型数据库就可以表示成这些单项式的和。通过对多项式的因式分解就能够得到更加紧凑的表示形式。 例如&#xff1a;下图中的表…

【设计模式】01-装饰器模式Decorator

作用&#xff1a;在不修改对象外观和功能的情况下添加或者删除对象功能&#xff0c;即给一个对象动态附加职能 装饰器模式主要包含以下角色。 抽象构件&#xff08;Component&#xff09;角色&#xff1a;定义一个抽象接口以规范准备接收附加责任的对象。具体构件&#xff08…

unity打包apk运行于google手机

第一次打包apk运行于Pixel 7 Pro 一直提示安装包无法安装 untiy版本2020.1.0f1 有两点需要注意 第一 Scrpting Backend 需要选择 IL2CPP 勾选 ARM64 第二 勾选 Custom Main Mainfest 在Assets -> Plugins -> Android文件夹下 AndroidMainfest 中增加android:export…

QT3作业

1 2. 使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数&#xff0c;将登录按钮使用t5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#…

iMazing2024Windows和Mac的iOS设备管理软件(可以替代iTunes进行数据备份和管理)

iMazing2024是一款兼容 Windows 和 Mac 的 iOS 设备管理软件&#xff0c;可以替代 iTunes 进行数据备份和管理。以下是一些 iMazing 的主要功能和优点&#xff1a; 数据备份和恢复&#xff1a;iMazing 提供了强大的数据备份和恢复功能&#xff0c;可以备份 iOS 设备上的各种数据…

PWM在STM32中使用指南

什么是PWM? PWM&#xff08;脉冲宽度调制&#xff09;是一种常用来控制模拟电路的技术&#xff0c;通过修改脉冲的宽度&#xff08;即在固定周期内的高电平持续时间&#xff09;来调控输出信号的平均电压。 一个PWM信号主要包括两个部分&#xff1a;一个是占空比&#xff0c;…

四甲基罗丹明-叠氮,5(6)-TAMRA N3,常用的生物标记试剂

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;四甲基罗丹明-叠氮&#xff0c;Tetramethylrhodamine, TMR&#xff0c;5(6)-TAMRA-azide&#xff0c;5(6)-TAMRA N3 一、基本信息 产品简介&#xff1a;5 (6) - TAMRA azide, also known as tetramethylrhodamine a…

智慧安防/视频监控汇聚平台EasyCVR如何通过接口调用获取设备录像回看的流地址?

视频云存储/视频融合/安防监控EasyCVR视频汇聚系统可兼容各品牌的IPC、NVR、移动单兵、智能手持终端、移动执法仪、无人机、布控球等设备的接入&#xff0c;支持的接入协议包括&#xff1a;国标GB28181、RTSP/Onvif、RTMP&#xff0c;以及厂家的私有协议与SDK&#xff0c;如&am…

全流程点云机器学习(二)使用PaddlePaddle进行PointNet的机器学习训练和评估

前言 这不是高支模项目需要嘛&#xff0c;他们用传统算法切那个横杆竖杆流程复杂耗时很长&#xff0c;所以想能不能用机器学习完成这些工作&#xff0c;所以我就来整这个工作了。 基于上文的数据集切分 &#xff0c;现在来对切分好的数据来进行正式的训练。 本系列文章所用的…

使用 Next.js 连接 mysql 数据库

前言 本文主要为大家介绍&#xff0c;如何使用 Next 框架实现一个简单的后端接口&#xff0c;并且从数据库中请求数据返回给前端。 实现 创建api/getData文件夹 项目创建完成后在 app 文件下新建api文件夹&#xff0c;在 api 文件夹下新建 getData 文件夹&#xff0c;在 ge…

IOT-Reaserch安装ghidra以及IDEA和ghidra的配置

Linux research 5.4.0-91-generic #102~18.04.1-Ubuntu SMP Thu Nov 11 14:46:36 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux java --version IOT自带的java是符合要求的&#xff0c;不需要额外下载 iotresearch:~/install-file$ java --version openjdk 11.0.13 2021-10-19 …

数字新纪元:探索Web3对社会的影响

在当今数字化时代&#xff0c;技术的进步已经成为社会发展的驱动力之一。而随着区块链技术的快速发展&#xff0c;我们正处在一个即将到来的数字新纪元——Web3时代。这一新时代不仅仅是技术的迭代升级&#xff0c;更是对传统社会模式的颠覆和重构。本文将深入探讨Web3对社会的…

深入理解指针(c语言)

目录 一、使用指针访问数组二、数组名的理解1、数组首元素的地址2、整个数组 三、一维数组传参的本质四、冒泡排序五、二级指针六、指针数组 一、使用指针访问数组 可以使用指针来访问数组元素。例如&#xff0c;可以声明一个指针变量并将其指向数组的第一个元素&#xff0c;然…

Github代码仓库SSH配置流程

作者&#xff1a; Herman Ye Auromix 测试环境&#xff1a; Ubuntu20.04 更新日期&#xff1a; 2024/02/21 注1&#xff1a; Auromix 是一个机器人爱好者开源组织。 注2&#xff1a; 由于笔者水平有限&#xff0c;以下内容可能存在事实性错误。 相关背景 在为Github代码仓库配…

Unity Shader ASE基础效果思路与代码(一):遮罩、硬边溶解、光边溶解、UV扰动

Unity Shader ASE基础效果思路与代码(一)&#xff1a;遮罩、硬边溶解、光边溶解、UV扰动 文章目录 Unity Shader ASE基础效果思路与代码(一)&#xff1a;遮罩、硬边溶解、光边溶解、UV扰动遮罩效果硬边溶解光边溶解UV扰动 遮罩效果 效果展示&#xff1a; 思路与代码&#xff1…