初阶数据结构之---顺序表和链表(C语言)

引言-线性表

线性表:

线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构。线性表在逻辑上是线性结构,也就是说是连续的一条直线。但在物理上并不一定是连续的。线性表在物理上存储时,通常以数组链式结构的形式存储。

我们今天的主角,顺序表和链表,其实都是线性表,当然线性表不止包含这两个

线性表:

  • 顺序表
  • 链表
  • 队列
  • 字符串
  • ……

再次声明:线性表的逻辑结构是线性的,物理结构不一定是线性

顺序表

概念及结构

顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。

顺序表一般可以分为:

1.静态顺序表:使用定长存储元素

2.动态顺序表:使用动态开辟数组的存储

来跟我一起手搓个顺序表吧

静态顺序表只适用于确定知道需要存多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪费,开少了不够用。所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们手搓动态顺序表。

我们先写一个头文件,里面写好我们维护的动态顺序表以及要实现的接口函数

结构及接口Sqlist.h

//Sqlist.h
#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<assert.h>
#define INIT_CAPACITY 4
typedef int SLDataType;
// 动态顺序表 -- 按需申请
typedef struct SeqList
{SLDataType* a;//指向动态开辟数组int size;     // 有效数据个数int capacity; // 空间容量
}SL;//初始化和销毁
void SLInit(SL* ps);
void SLDestroy(SL* ps);
//顺序表打印
void SLPrint(SL* ps);
//扩容
void SLCheckCapacity(SL* ps);
//头部插入删除 / 尾部插入删除
void SLPushBack(SL* ps, SLDataType x);
void SLPopBack(SL* ps);
void SLPushFront(SL* ps, SLDataType x);
void SLPopFront(SL* ps);
//指定位置之前插入/删除数据
void SLInsert(SL* ps, int pos, SLDataType x);
void SLErase(SL* ps, int pos);
//顺序表查找数据
int SLFind(SL* ps,SLDataType x);

往下就可以开始实现我们的顺序表内容了,下面对于接口的实现放在 Sqlist.c 中

初始化和销毁

void SLInit(SL* ps)
{ps->a = NULL; //开始时,给一个空指针ps->capacity = ps->size = 0;
}void SLDestroy(SL* ps)
{assert(ps); //断言,防止ps为空指针ps->capacity = ps->size = 0;free(ps->a);ps->a = NULL;
}

顺序表打印

void SLPrint(SL* ps)
{assert(ps);for (int i = 0; i < ps->size; i++) {printf("%d\n",ps->a[i]);}printf("\n");
}

 这里需要注意的是,在打印过程中,往顺序表中放置的数据类型不同,所打印的方式也会有所不同,在头文件Sqlist.h中

typedef int SLDataType;

这句代码说明放入的数据类型是int,所以我这里就使用int的打印方式了。

扩容

void SLCheckCapacity(SL* ps)
{if (ps->size == ps->capacity) {int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;SLDataType* tmp = (SLDataType*)realloc(ps->a, newCapacity * sizeof(SLDataType));//防止开辟空间失败返回空指针if (tmp == NULL) {perror("malloc fail:");exit(1);}ps->a = tmp;//更新容量ps->capacity = newCapacity;}
}

扩容的部分在整个动态顺序表中占据非常重要的地位,关系到堆中空间的开辟,保证后续数据操作的顺利进行。

头部插入删除和尾部插入删除数据

//头部插入删除
void SLPushFront(SL* ps, SLDataType x)
{assert(ps);SLCheckCapacity(ps);//保证插入时不会越界for (int i = ps->size; i > 0; i--) {ps->a[i] = ps->a[i - 1];}ps->a[0] = x;ps->size++;
}
void SLPopFront(SL* ps)
{assert(ps);assert(ps->size);for (int i = 0; i < ps->size - 1; i++) {ps->a[i] = ps->a[i + 1];}ps->size--;
}
//尾部插入删除
void SLPushBack(SL* ps, SLDataType x)
{assert(ps);SLCheckCapacity(ps);ps->a[ps->size++] = x;
}void SLPopBack(SL* ps)
{assert(ps);assert(ps->size != 0);ps->size--;
}

这里要注意的是,头部插入删除的实现方式,是将整个后面的数据做了一个移动操作,时间耗费比较大,所以顺序表在实际应用当中,尽量避免使用头插头删。

指定位置之前插入数据和指定位置删除数据

void SLInsert(SL* ps, int pos, SLDataType x)
{assert(ps);assert(pos >= 0 && pos <= ps->size);SLCheckCapacity(ps);for (int i = ps->size; i > pos; i--) {ps->a[i] = ps->a[i - 1];}ps->a[pos] = x;ps->size++;
}void SLErase(SL* ps, int pos)
{assert(ps);assert(pos >= 0 && pos < ps->size);for (int i = pos; i < ps->size - 1; i++) {ps->a[i] = ps->a[i + 1];}ps->size--;
}

这里的插入和删除操作在顺序表中其实也避免不了数据的移动,这也体现了顺序表的一个缺陷,中间部分数据的插入删除的时间复杂度较高。

查找数据

最后就是查找列表中数据,返回找到的下标

int SLFind(SL* ps,SLDataType x)
{assert(ps);for (int i = 0; i < ps->size; i++) {if (ps->a[i] == x)return i;}return -1;
}

这里注意一下,数据的匹配查找其实也要匹配 a 动态数组中的的数据类型,这里我们定义的数据类型为int,就以int的查找方式查找。

体验体验手搓的动态顺序表

以下是体验码

#include"Sqlist.h"
int main()
{struct SeqList sq;SLInit(&sq);SLPushBack(&sq, 1);SLPushBack(&sq, 2);SLPushBack(&sq, 5);SLPushBack(&sq, 6);SLPushBack(&sq, 3);SLPushFront(&sq, 4);SLPrint(&sq);//4 1 2 5 6 3 SLPopBack(&sq);SLPrint(&sq);//4 1 2 5 6SLPopFront(&sq);SLPrint(&sq);//1 2 5 6int pos1 = SLFind(&sq, 5);SLErase(&sq, pos1);SLPrint(&sq);//1 2 6int pos2 = SLFind(&sq, 6);SLInsert(&sq, pos2, 100);SLPrint(&sq);//1 2 100 6SLDestroy(&sq);return 0;
}

 以上就是手搓的动态顺序表以及使用了。

链表

链表的概念及结构

链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 

大概是这样一个东西

注:

  1. 从图上可以看出,链式结构在逻辑上是连续的,但是在物理上不一定连续
  2. 现实中的结点一般都是从堆上申请出来的
  3. 从堆上申请的空间,是按照一定的策略来分配的,两次申请的空间可能连续,也可能不连续

链表的分类

其实链表不止我刚刚展示的一种,以下情况组合起来就有8种链表结构

1.单像或者双向

图中,上面的是单向,下面为双向

2.带头或者不带头

图中,上面是不带头,下面是带头

3.循环或者非循环

图中,上面是,不循环,下面是循环

它们两两排列组合 2 * 2 * 2 刚好就为8

虽然有这么多结构,但是实际上最常用的只有两种结构:

  1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结
    构的子结构
    ,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多
  2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了

这次手搓个单链表怎样

这里的单链表当然指的是无头单项非循环链表喽。

SList.h存放了单链表结点结构和函数声明

//SList.h
typedef int SLTDataType;
typedef struct SListNode
{SLTDataType data;struct SListNode* next;
}SLTNode;//打印单向链表内容
void SLTPrint(SLTNode* phead);
//创建新节点
SLTNode* CreatNewNode(SLTDataType x);
//头部插入删除/尾部插入删除
void SLTPushBack(SLTNode** pphead, SLTDataType x);
void SLTPushFront(SLTNode** pphead, SLTDataType x);
void SLTPopBack(SLTNode** pphead);
void SLTPopFront(SLTNode** pphead);
//查找
SLTNode* SLTFind(SLTNode* phead, SLTDataType x);
//在指定位置之前插入数据
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//删除pos节点
void SLTErase(SLTNode** pphead, SLTNode* pos);
//在指定位置之后插入数据
void SLTInsertAfter(SLTNode* pos, SLTDataType x);
//删除pos之后的节点
void SLTEraseAfter(SLTNode* pos);
//销毁链表
void SListDesTroy(SLTNode** pphead);

下面来实现函数声明的源代码

链表打印

void SLTPrint(SLTNode* phead)
{assert(phead);SLTNode* pcur = phead;while (pcur != NULL) {printf("%d->", pcur->data);pcur = pcur->next;}printf("NULL\n");
}

动态申请一个结点

SLTNode* CreatNewNode(SLTDataType x)
{SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));if (newnode == NULL) {perror("malloc fail:");exit(1);}newnode->data = x;newnode->next = NULL;return newnode;
}

这里创建新结点的重要性不亚于顺序表中的扩容,结点的内存也是开辟在堆上的。

头部的插入删除和尾部的插入删除

//头部插入删除
void SLTPushFront(SLTNode** pphead, SLTDataType x)
{assert(pphead);SLTNode* newnode = CreatNewNode(x);newnode->next = *pphead;*pphead = newnode;
}
void SLTPopFront(SLTNode** pphead)
{assert(pphead);assert(*pphead);SLTNode* prev = *pphead;*pphead = (*pphead)->next;free(prev);prev = NULL;
}
//尾部插入删除
void SLTPushBack(SLTNode** pphead, SLTDataType x)
{assert(pphead);SLTNode* newnode = CreatNewNode(x);if (*pphead == NULL) {*pphead = newnode;return;}SLTNode* ptail = *pphead;while (ptail->next) {ptail = ptail->next;}ptail->next = newnode;
}
void SLTPopBack(SLTNode** pphead)
{assert(pphead);assert(*pphead);if ((*pphead)->next == NULL) {free(*pphead);*pphead == NULL;return;}SListNode* ptail = *pphead;SListNode* prev = NULL;while (ptail->next) {prev = ptail;ptail = ptail->next;}prev->next = NULL;free(ptail);ptail = NULL;
}

这里链表头插头删的时间复杂度相比顺序表就大大降低了,可是尾插尾删还是有一定缺陷的,其操作必须走到链表末尾才能进行。

查找

SLTNode* SLTFind(SLTNode* phead, SLTDataType x)
{assert(phead);SLTNode* pcur = phead;while (pcur) {if (pcur->data == x) {return pcur;}pcur = pcur->next;}return NULL;
}

这里查找的逻辑非常简单,就是遍历链表匹配元素,如果没找到返回一个空指针。

删除pos结点

void SLTErase(SLTNode** pphead, SLTNode* pos)
{assert(pphead);assert(pos);assert(*pphead);if (*pphead == pos) {SLTNode* del = *pphead;*pphead = (*pphead)->next;free(del);del = NULL;}SLTNode* pcur = *pphead;while (pcur&&pcur->next != pos) {pcur = pcur->next;}pcur->next = pos->next;free(pos);pos = NULL;
}

这里稍微注意传入的pos是一个指针,指向链表中的元素

这里你是否注意到pphead是一个二级指针,是的,当pos指向头结点时,需要改变外部phead结点的指向,改变phead指针指向就需要使用二级指针pphead了。

指定位置之后插入数据

void SLTInsertAfter(SLTNode* pos, SLTDataType x)
{assert(pos);SLTNode* newnode = CreatNewNode(x);newnode->next = pos->next;pos->next = newnode;
}

为什么不提供在指定数据之前插入数据呢?是由于此单链表的无头和单向性,使其很难确定前驱节点的位置和情况,不过硬要提供其实也是可实现的。

同时这里的pos也是一个指针

删除pos之后的结点

void SLTEraseAfter(SLTNode* pos)
{assert(pos && pos->next);SLTNode* del = pos->next;pos->next = del->next;free(del);del = NULL;
}

删除链表释放空间

void SListDesTroy(SLTNode** pphead)
{assert(pphead);assert(*pphead);SLTNode* next = (*pphead)->next;SLTNode* pcur = (*pphead);while (pcur) {next = pcur->next;free(pcur);pcur = next;}*pphead = NULL;
}

注:这里的链表是一个结点一个结点释放的。

体验下手搓的单链表

int main()
{SLTNode* phead = NULL;SLTPushBack(&phead, 1);SLTPushBack(&phead, 2);SLTPushBack(&phead, 3);SLTPushBack(&phead, 4);SLTPushFront(&phead, 5);SLTPrint(phead);//5->1->2->3->4->NULLSLTPopBack(&phead);SLTPopFront(&phead);SLTPrint(phead);//1->2->3->NULLSLTNode* ret1 = SLTFind(phead, 3);SLTInsert(&phead, ret1, 100);SLTPrint(phead);//1->2->100->3->NULLSLTNode* ret2 = SLTFind(phead, 2);SLTErase(&phead, ret2);SLTPrint(phead);//1->100->3->NULLSLTDestroy(phead);return 0;
}

以上就是单项不循环链表的内容了。

来来来,再手搓个双向链表可否?

这里的双向链表便是带头循环双向链表,复杂了些,但用起来确实不知道比单链表爽多少倍。

下面放到LTList.h中

//LTList.h
typedef int LTDataType;
typedef struct ListNode
{LTDataType data;struct ListNode* prev;struct ListNode* next;
}LTNode;//创建双向链表结点
LTNode* LTBuyNode(LTDataType x);
//下面有两种初始化方式,这里我们选择第二种,两个其实差别不大
//void LTInit(LTNode** pphead);
LTNode* LTInit();
//销毁链表
void LTDestroy(LTNode* phead);
//打印链表
void LTPrint(LTNode* phead);
//判断链表是否为空
bool LTEmpty(LTNode* phead);
//双向链表的尾插和尾删
void LTPushBack(LTNode* phead, LTDataType x);
void LTPopBack(LTNode* phead);
//双向链表的头插和头删
void LTPushFront(LTNode* phead, LTDataType x);
void LTPopFront(LTNode* phead);
//在pos位置之后插入和删除数据
void LTInsert(LTNode* pos, LTDataType x);
void LTErase(LTNode* pos);
//查找
LTNode* LTFind(LTNode* phead, LTDataType x);

然后就可以实现我们函数声明的源代码了,放到LTList.c中

创建双向链表结点

LTNode* LTBuyNode(LTDataType x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));newnode->data = x;newnode->next = newnode->prev = newnode;return newnode;
}

初始化链表

LTNode* LTInit()
{LTNode* phead = (LTNode*)malloc(sizeof(LTNode));if (phead == NULL) {perror("malloc phead fail:");exit(1);}phead->data = -1;phead->next = phead->prev = phead;return phead;
}

头节点data里其实放什么值都无所谓

销毁链表

void LTDestroy(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;LTNode* pnext = pcur->next;while (pcur != phead) {free(pcur);pcur = pnext;pnext = pnext->next;}free(phead);pcur = pnext = phead = NULL;
}

这里和单链表销毁同理

打印链表

void LTPrint(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead) {printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}

判断链表是否为空

bool LTEmpty(LTNode* phead)
{assert(phead);if (phead->next == phead)return true;elsereturn false;
}

链表头和链表末尾的插入删除

//链表头的插入和删除
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);newnode->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}
void LTPopFront(LTNode* phead)
{assert(phead);LTNode* del = phead->next;phead->next = del->next;del->next->prev = phead;free(del);del = NULL;
}
//链表末尾的插入和删除
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);newnode->next = phead;newnode->prev = phead->prev;phead->prev->next = newnode;phead->prev = newnode;
}void LTPopBack(LTNode* phead)
{assert(phead);LTNode* del = phead->prev;phead->prev = del->prev;del->prev->next = phead;free(del);del = NULL;
}

这里链表尾的插入删除就和单链表尾的插入删除不一样了,双向链表可以直接通过head->prev直接找到链表末尾,因此时间复杂度大大降低。

在pos元素之后插入和删除结点

void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);newnode->prev = pos;newnode->next = pos->next;pos->next->prev = newnode;pos->next = newnode;
}
void LTErase(LTNode* pos)
{assert(pos);pos->prev->next = pos->next;pos->next->prev = pos->prev;free(pos);pos = NULL;
}

查找

LTNode* LTFind(LTNode* phead, LTDataType x)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead) {if (pcur->data == x) {return pcur;}pcur = pcur->next;}return NULL;
}

以上便是双向链表源代码实现的全部内容了

 再来试试我们写的双向链表

int main()
{LTNode* phead = LTInit();LTPushBack(phead, 1);LTPushBack(phead, 2);LTPushBack(phead, 3);LTPushFront(phead, 4);LTPushFront(phead, 100);LTPrint(phead);//100->4->1->2->3->LTPopFront(phead);LTPopBack(phead);LTPrint(phead);//4->1->2->LTNode* ret = LTFind(phead, 2);LTInsert(ret, 120);LTPrint(phead);//4->1->2->120->LTErase(ret->next);LTPrint(phead);//4->1->2->LTDestroy(phead);return 0;
}

很好,到这里,双向链表的内容也就差不多了。

顺序表和链表小结

顺序表和链表虽然在物理上都是线性的,在实际包装好使用时差别也不大,但是底层却天差地别

合理运用顺序表和链表各自的优势很有利于一些项目的开发,下面是对顺序表和链表的对比总结

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定连续

随机访问

支持:O(1)不支持:O(N)
任意位置插入或者删除元素可能需要搬移元素,效率低:O(N)只需修改指针指向
插入动态顺序表,空间不够需要扩容没有容量的概念
应用场景元素高效存储+频繁访问让人难以位置插入和删除频繁
缓存利用率

如果你想了解缓存利用率相关的知识,可以看看下面博客

  ​​​​​ 与程序员相关的CPU缓存知识

结语

今天的内容到这里就结束了,本来想着把这篇博客分成三部分的,不知咋回事一口气给写完了,一万多字其实很多一部分是代码。后续博主还会继续产出数据结构系列的内容。如果本篇博客对你有帮助的话,还请多多支持博主,感谢大家♥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习 day38(有放回抽样、随机森林算法、XGBoost)

有放回抽样 有放回抽样和无放回抽样的区别&#xff1a;有放回可以确保每轮抽取的结果不一定相同&#xff0c;无放回则每轮抽取的结果都相同 在猫狗的例子中&#xff0c;我们使用”有放回抽样“来抽取10个样本&#xff0c;并组合为一个与原始数据集不同的新数据集&#xff0c;虽…

git push 使用 --mirror 参数复制仓库

迁移一个 Git 仓库并且保留原有的提交记录和分支 克隆原始仓库到本地 git clone <原始仓库URL> <新仓库目录>添加新的远程仓库&#xff1a;git remote add new-origin <新仓库URL>推送所有分支和标签到新的远程仓库&#xff1a;git push new-origin --mirro…

深度学习基础——SSD目标检测

SSD网络介绍 使用多个特征图作为特征预测层。 SSD (Single Shot MultiBox Detector)于2016年提出。当网络输入为300300大小时&#xff0c;在VOC2007测试集上达到74.3%的mAP;当输入是512512大小时&#xff0c;达到了76.9%的mAP SSD_Backbone部分介绍 不变的部分 特征提取网…

ubuntu 22.04 图文安装

ubuntu 22.04.3 live server图文安装 一、在Vmware里安装ubuntu 22.04.3 live server操作系统 选择第一个选项开始安装 选择English语言 选择中间选项不更新安装&#xff0c;这是因为后续通过更换源之后再更新会比较快 键盘设计继续选择英文&#xff0c;可以通过语言选择…

c编译器学习03:chibicc的win10 vs 编译、调试环境设置

虚拟机 用VMware Workstation 17 Player&#xff0c;安装centos7&#xff0c;安装gcc等开发工具 设置虚拟机的共享文件夹&#xff0c;将win10下下载的chibicc拷贝到/home/a下 直接make编译 用ip addr查询得到虚拟机的ip地址&#xff0c;后面vs远程开放时使用。 vs设置 vs毕…

2.20号qt

1.Qt中的信息调试类 &#xff08;输出类&#xff09; QDebug //1.类似与printf qDebug("%s","hello kittiy"); //2. 类似与cout 默认有换行 比较常用的方式 qDebug() << "你好" ; //1.类似与printf qDebug("%s",&q…

JS基础之函数

js基础之函数 目录 js基础之函数什么是函数&#xff1f;函数的语法无参函数有参函数&#xff1a;函数表达式函数的返回值returnarguments 什么是函数&#xff1f; 函数的作用就是将一段代码块封装打包到一起&#xff0c;方便后期重复使用 函数的语法 function 函数名(参数1,…

使用elasticsearch 8.4.3 的管道解析日志(kibana操作)

使用elasticsearch的管道解析日志&#xff08;kibana操作&#xff09; 一. 什么是 pipeline二. 案例 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 以下是一个简单的文档解析案例…

Project_Euler-15 题解

Project_Euler-15 题解 题目 思路 一眼背包问题&#xff0c;再看一眼广度优先搜索&#xff0c;再看一眼排列组合&#xff0c;这里讲一讲排列组合的解法吧&#xff1a; 以 2 ∗ 2 2*2 2∗2的组合为例可以发现&#xff1a; 无论哪一种方法&#xff0c;从左上角到右下角总共需要…

【LeetCode】递归精选8题——基础递归、链表递归

目录 基础递归问题&#xff1a; 1. 斐波那契数&#xff08;简单&#xff09; 1.1 递归求解 1.2 迭代求解 2. 爬楼梯&#xff08;简单&#xff09; 2.1 递归求解 2.2 迭代求解 3. 汉诺塔问题&#xff08;简单&#xff09; 3.1 递归求解 4. Pow(x, n)&#xff08;中等&…

论文精读--Noisy Student

一个 EfficientNet 模型首先作为教师模型在标记图像上进行训练&#xff0c;为 300M 未标记图像生成伪标签。然后将相同或更大的 EfficientNet 作为学生模型并结合标记图像和伪标签图像进行训练。学生网络训练完成后变为教师再次训练下一个学生网络&#xff0c;并迭代重复此过程…

强化学习入门(Matlab2021b)-定义奖励和观察【1】

目录 1 前言2 Continuous Rewards 连续奖励3 Discrete Rewards 离散奖励4 Mixed Rewards 混合奖励5 Observation Signals 观测信号参考链接1 前言 为了指导学习过程,强化学习使用从环境生成的标量奖励信号。该信号衡量agent相对于任务目标的性能。换句话说,对于给定的观察(…

来看看投资界最关心的 Sora 几大问题

作者&#xff1a;苍何&#xff0c;前大厂高级 Java 工程师&#xff0c;阿里云专家博主&#xff0c;CSDN 2023 年 实力新星&#xff0c;土木转码&#xff0c;现任部门技术 leader&#xff0c;专注于互联网技术分享&#xff0c;职场经验分享。 &#x1f525;热门文章推荐&#xf…

如何查看 CPU 占用高的进程

1、使用 top 命令&#xff0c;查看 cpu 占用超过 100% 2、查看哪个进程占用 cpu 最高&#xff08;该案例使用阿里的 arthas 来查看&#xff09; 2.1 下载&#xff1a;curl -O https://arthas.aliyun.com/arthas-boot.jar 2.2 启动命令&#xff1a;java -jar arthas-boot.jar …

OpenAI 发布文生视频模型 Sora,普通人应该怎么做才能利益最大化?

原文链接&#xff1a; OpenAI 发布文生视频模型 Sora&#xff0c;普通人应该怎么做才能利益最大化&#xff1f; 自从 2022 年 11 月 30 日 ChatGPT 发布之后&#xff0c;每次 OpenAI 再发布新功能都跟过年一样&#xff0c;那叫一个热闹。 包括 GPT 4.0&#xff0c;GPT Store&…

深入浅出JVM(一)之Hotspot虚拟机中的对象

本篇文章思维导图 对象的创建 对象的创建可以分为五个步骤:检查类加载,分配内存,初始化零值,设置对象头,执行实例构造器 类加载检查 HotSpot虚拟机遇到一条new指令,会先检查能否在常量池中定位到这个类的符号引用,检查这个类是否类加载过 没有类加载过就去类加载类加载过就进…

粉丝2000 啦,选对赛道,做正确的事情,粉丝涨到2000说明大家对我做的事情还是非常的认可的,继续坚持中,将相关资料做了视频整理

1&#xff0c;见证历史成长&#xff0c;粉丝涨到 2000 啦 2&#xff0c;把视频进行分类&#xff0c;研究xinference相关视频 【xinference】&#xff08;1&#xff09;&#xff1a;在autodl上&#xff0c;使用xinference部署chatglm3大模型&#xff0c;支持函数调用&#xff0…

网站常见的攻击类型有什么,如何针对性防护

在互联网时代&#xff0c;几乎每个网站都存在着潜在的安全威胁。这些威胁可能来自人为失误&#xff0c;也可能源自网络犯罪团伙所发起的复杂攻击。无论攻击的本质如何&#xff0c;网络攻击者的主要动机通常是谋求经济利益。这意味着不管是什么网站类型潜在的威胁一直都存在。 在…

简单的服务器取证

一次简单的服务器取证入门 检材&#xff1a;https://pan.baidu.com/s/1T_OBlqe–7C-sfYhYyMZjQ?pwd8e19 目录 1、系统的内核版本2、系统的历史命令第32条3、SSH服务的开放端口4、宝塔面板的用户名5、宝塔面板的端口号6、面板上的网站域名7、面板是否开启了SSL服务8、面板别名是…

AD24-PCB间距规则、布线线宽规则、规则使能优先级设置

一、PCB间距规则 1、设计-规则 2、忽略焊盘间距要打勾&#xff0c;不然会出现右边的错误 3、可进行不同间距要求添加 二、布线规则 1、电源线宽&#xff0c;根据载流&#xff0c;进行加宽 非阻抗走线&#xff0c;根据生成要求 大于6mil&#xff0c;成本最低&#xff1b;…