目录
力扣129. 求根节点到叶节点数字之和
解析代码
力扣129. 求根节点到叶节点数字之和
129. 求根节点到叶节点数字之和
难度 中等
给你一个二叉树的根节点 root
,树中每个节点都存放有一个 0
到 9
之间的数字。
每条从根节点到叶节点的路径都代表一个数字:
- 例如,从根节点到叶节点的路径
1 -> 2 -> 3
表示数字123
。
计算从根节点到叶节点生成的 所有数字之和 。
叶节点 是指没有子节点的节点。
示例 1:
输入:root = [1,2,3] 输出:25 解释: 从根到叶子节点路径1->2
代表数字12
从根到叶子节点路径1->3
代表数字13
因此,数字总和 = 12 + 13 =25
示例 2:
输入:root = [4,9,0,5,1] 输出:1026 解释: 从根到叶子节点路径4->9->5
代表数字 495 从根到叶子节点路径4->9->1
代表数字 491 从根到叶子节点路径4->0
代表数字 40 因此,数字总和 = 495 + 491 + 40 =1026
提示:
- 树中节点的数目在范围
[1, 1000]
内 0 <= Node.val <= 9
- 树的深度不超过
10
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int sumNumbers(TreeNode* root) {}
};
解析代码
也是dfs的代码,要把当前值传下去,递归下面的①②③④步:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int sumNumbers(TreeNode* root) {return dfs(root, 0);}int dfs(TreeNode* root, int sum){sum = sum*10 + root->val;if(root->left == nullptr && root->right == nullptr)return sum;int ret = 0;if(root->left) // 如果左子树不为空ret += dfs(root->left, sum);if(root->right)ret += dfs(root->right, sum);return ret;}
};