判断二叉树是否是完全二叉树
思路:层次遍历,如果之前某个节点叶子节点为空,队列后续的所有节点的左右节点都不能非空,并且如果节点左节点为null但是右节点不为null该二叉树一定不是满二叉树
public static boolean isCBT1(Node head) {// PCif(head == null)return true;LinkedList<Node > queue = new LinkedList<>();boolean isLeaf = false;queue.add(head);while (!queue.isEmpty()){Node cur = queue.poll();Node left = cur.left;Node right = cur.right;if((isLeaf && (left != null || right != null)) || (left == null && right != null))return false;if(left != null ){queue.add(left);}if(right != null){queue.add(right);}if(left == null || right == null)isLeaf = true;}return true;}
思路2:使用递归方式,返回以当前节点为头结点的二叉树是否是满二叉树|完全二叉树以及返回当前树高度,调用方根据左右子树返回的信息判断当前树是否为完全二叉树
// 使用递归方式public static boolean isCBT2(class13.Code01_IsCBT.Node head) {if(head == null)return true;Info process = process(head);return process.isc;}public static Info process(Node head){if (head == null){return new Info(true,true,0);}Info l = process(head.left);Info r = process(head.right);boolean isFull = l.isf && r.isf && l.height == r.height;int height = Math.max(l.height,r.height)+1;boolean isComplate = false;if(l.height == r.height){if((l.isf && r.isf)||(l.isf && r.isc)){isComplate = true;}}else {if(l.height == r.height+1){if((r.isf && l.isf)||(r.isf && l.isc)){isComplate = true;}}}return new Info(isComplate,isFull,height);}static class Info{// 也包括满二叉树场景private boolean isc;private boolean isf;private int height;public Info(boolean isc,boolean isf,int height){this.isc = isc;this.isf = isf;this.height = height;}}
题目:给定一棵二叉树的头节点head,和另外两个节点a和b。返回a和b的最低公共祖先
思路:先序遍历二叉树,过程中记录子节点的父节点,维护在Map类型参数中,然后求第一个相同的祖先
方法2:递归,返回当前节点左右子树是否包含指定节点,如果是直接返回否则根据返回内容处理
static class Info{boolean finda;boolean findb;Node ans ;public Info(boolean finda, boolean findb, Node ans) {this.finda = finda;this.findb = findb;this.ans = ans;}}public static Node lowestAncestor1(Node head, Node o1, Node o2) {// PCInfo ans = process(head, o1, o2);return ans.ans;}public static Info process(Node head, Node o1, Node o2){if(head == null)return new Info(false,false,null);Info l = process(head.left,o1,o2);Info r = process(head.right,o1,o2);boolean finda = head == o1?true:l.finda||r.finda;boolean findb = head == o2?true:r.findb||l.findb;Node ans = null;if(l.ans != null){ans = l.ans;}else if (r.ans != null){ans = r.ans;}else {if(finda && findb){ans = head;}}return new Info(finda,findb,ans);}
题目:派对的最大快乐值 公司的每个员工都符合 Employee 类的描述。整个公司的人员结构可以看作是一棵标准的、 没有环的多叉树。树的头节点是公司唯一的老板。除老板之外的每个员工都有唯一的直接上级。 叶节点是没有任何下属的基层员工(subordinates列表为空),除基层员工外,每个员工都有一个或多个直接下级。派对的最大快乐值这个公司现在要办party,你可以决定哪些员工来,哪些员工不来,规则:1.如果某个员工来了,那么这个员工的所有直接下级都不能来2.派对的整体快乐值是所有到场员工快乐值的累加3.你的目标是让派对的整体快乐值尽量大给定一棵多叉树的头节点boss,请返回派对的最大快乐值。
思路:递归实现
public static int maxHappy1(Employee boss) {// PCif(boss == null)return 0;return Math.max(process(boss,true),process(boss,false));}// cur 来到当前人员// exist 直接领导是否来// 返回最大快乐值public static int process(Employee cur,boolean exist){if(cur == null)return 0;// 当前人员选择不来 这种情况和上级领导来或者不来都不影响int no = 0;for (Employee next : cur.nexts) {no += process(next,false);}int yes = 0;// 上级领未来并且当前人员参加if(!exist){for (Employee next : cur.nexts) {yes += process(next,true);}yes += cur.happy;}return Math.max(yes,no);}
上面递归方式传递参数包含了上级是否参加信息,另外一种递归方式,返回当前人员参加或者不参加两种情况的最大值,由上级决定自己是否参加
static class Info {private int no;private int yes;public Info(int no, int yes) {this.no = no;this.yes = yes;}}public static int maxHappy2(Employee boss) {if (boss == null)return 0;Info info = process2(boss);return Math.max(info.yes, info.no);}// 返回当前人员参加或者不参加最大happy值// 具体如何使用由上层决定public static Info process2(Employee cur) {if (cur == null)return new Info(0, 0);int yes = cur.happy;int no = 0;for (Employee next : cur.nexts) {Info info = process2(next);no += Math.max(info.no, info.yes);yes += info.no;}return new Info(no, yes);}
题目:判断二叉树是否是搜索二叉树
方法1:递归,左右子树返回是否递归相关信息,调用方法根据返回信息判断
public static boolean isBST1(Node head) {if(head == null)return true;Info info = process(head);return info.isSearch;}// 以当前节点为根节的二叉树,返回是否搜索二叉树信息public static Info process(Node head){Info left = null;if(head.left != null){left = process(head.left);}Info right = null;if(head.right != null){right = process(head.right);}int max = head.value;int min = head.value;if(left != null){max = Math.max(max, left.max);min = Math.min(min, left.min);}if(right != null){max = Math.max(right.max,max);min = Math.min(min, right.min);}boolean flag = true;if(left != null && !left.isSearch)flag = false;if(right != null && !right.isSearch)flag = false;if(left != null && left.max >= head.value)flag = false;if(right!=null && right.min<= head.value){flag = false;}return new Info(max,min,flag);}static class Info{private int max;private int min;private boolean isSearch;public Info(int max, int min, boolean isSearch) {this.max = max;this.min = min;this.isSearch = isSearch;}}
方法2:利用二叉搜索树性质,先序遍历一定是递增序列
题目:给定一棵二叉树的头节点head,返回这颗二叉树是不是平衡二叉树
思路:递归方法
public static boolean isBalanced1(Node head) {if(head == null)return true;Info ans = process(head);return ans.isblance;}// 以当前节点为根节点的二叉树,返回该二叉树是否为平衡二叉树public static Info process(Node head){if(head == null)return new Info(true,0);Info l = process(head.left);Info r = process(head.right);boolean is = false;// 不管左右子树是否为平衡二叉树 直接计算,调用方最终需要的不是高度而是 是否平衡int height = Math.max(l.height,r.height)+1;// process方法返回对象一定不为nullif(l.isblance && r.isblance && Math.abs(l.height-r.height)<=1){is = true;}return new Info(is,height);}static class Info {private boolean isblance;private Integer height ;public Info(boolean isblance, Integer height) {this.isblance = isblance;this.height = height;}}
题目:给定一棵二叉树的头节点head,返回这颗二叉树是不是满二叉树
思路:层次遍历上一层和当前层数量二倍关系,特殊情况最后一层遍历时候需要特殊处理
public static boolean isFull1(Node head) {if(head == null)return true;// 层次遍历 判断上一层和当前层数量是否二倍关系LinkedList<Node> queue = new LinkedList<>();queue.add(head);while (!queue.isEmpty()){// 用于判断是否为最后一行boolean allNull = true;int pre = queue.size();for (int i = 0; i < pre; i++) {Node cur = queue.poll();if(cur.left != null){queue.add(cur.left);allNull = false;}if(cur.right != null){queue.add(cur.right);allNull = false;}}int nextlen = queue.size();// 不是最后一行,name上一层和当前层节点数量一定是二倍关系if(!allNull && nextlen != 2*pre){return false;}}return true;}
思路2:递归方法,返回左右子树是否为满二叉树
static class Info{private boolean isFull;private int height ;public Info(boolean isFull, int height) {this.isFull = isFull;this.height = height;}}public static boolean isFull2(Node head) {if(head == null)return true;Info process = process(head);return process.isFull;}public static Info process(Node head){if(head == null){return new Info(true,0);}Info l = process(head.left);Info r = process(head.right);boolean isFull = false;int height = Math.max(l.height,r.height)+1;if(l.isFull && r.isFull && l.height == r.height){isFull = true;}return new Info(isFull,height);}
题目:给定一棵二叉树的头节点head,返回这颗二叉树中最大的二叉搜索子树的大小
思路:递归返回子树作为根节点二叉搜索树信息
、
public static class TreeNode {public int val;public TreeNode left;public TreeNode right;public TreeNode(int value) {val = value;}}// 提交如下的代码,可以直接通过public static int largestBSTSubtree(TreeNode head) {if (head == null) {return 0;}return process(head).maxBSTSubtreeSize;}public static class Info {public int maxBSTSubtreeSize;public int allSize;public int max;public int min;public Info(int m, int a, int ma, int mi) {maxBSTSubtreeSize = m;allSize = a;max = ma;min = mi;}}public static Info process(TreeNode x) {if (x == null) {return null;}Info leftInfo = process(x.left);Info rightInfo = process(x.right);int max = x.val;int min = x.val;int allSize = 1;if (leftInfo != null) {max = Math.max(leftInfo.max, max);min = Math.min(leftInfo.min, min);allSize += leftInfo.allSize;}if (rightInfo != null) {max = Math.max(rightInfo.max, max);min = Math.min(rightInfo.min, min);allSize += rightInfo.allSize;}int p1 = -1;if (leftInfo != null) {p1 = leftInfo.maxBSTSubtreeSize;}int p2 = -1;if (rightInfo != null) {p2 = rightInfo.maxBSTSubtreeSize;}int p3 = -1;boolean leftBST = leftInfo == null ? true : (leftInfo.maxBSTSubtreeSize == leftInfo.allSize);boolean rightBST = rightInfo == null ? true : (rightInfo.maxBSTSubtreeSize == rightInfo.allSize);if (leftBST && rightBST) {boolean leftMaxLessX = leftInfo == null ? true : (leftInfo.max < x.val);boolean rightMinMoreX = rightInfo == null ? true : (x.val < rightInfo.min);if (leftMaxLessX && rightMinMoreX) {int leftSize = leftInfo == null ? 0 : leftInfo.allSize;int rightSize = rightInfo == null ? 0 : rightInfo.allSize;p3 = leftSize + rightSize + 1;}}return new Info(Math.max(p1, Math.max(p2, p3)), allSize, max, min);}
题目:给定一棵二叉树的头节点head,任何两个节点之间都存在距离,
返回整棵二叉树的最大距离
思路:递归方法,最大宽度,要么经过当前节点,要么是左右子树任意一个最长路径
public static Info process(Node head){if(head == null){return null;}Info left = process(head.left);Info right = process(head.right);// 最大宽度经过当前head节点int has = 1;int maxwide = 0;int depth = 0;if(left != null){has += left.maxdepth;maxwide = Math.max(left.maxwide,maxwide);depth = Math.max(depth,left.maxdepth);}if(right != null){has += right.maxdepth;maxwide = Math.max(right.maxwide,maxwide);depth = Math.max(depth,right.maxdepth);}// 最大宽度要么经过当前节点,要么在左右任意子树maxwide = Math.max(has,maxwide);return new Info(depth+1,maxwide);}static class Info{// 最大深度private int maxdepth;// 最大宽度private int maxwide;public Info(int maxdepth, int maxwide) {this.maxdepth = maxdepth;this.maxwide = maxwide;}}
问题:给定字符串数组,返回所有组合中字典排序最小的组合对应的字符串
思路:1 暴力方法,获取所有排列组合,然后取字典排序最小的
// process 拿到所有的排列租户,然后找到最小的一个并返回public static String lowestString1(String[] strs) {// PCif (strs == null || strs.length <= 0) return "";TreeSet<String> process = process(strs);return process.size() == 0 ? "" : process.first();}// 返回当前数组 arrs 的所有组合public static TreeSet<String> process(String[] arrs) {TreeSet<String> ans = new TreeSet<>();if (arrs == null || arrs.length <= 0) {ans.add("");return ans;}for (int i = 0; i < arrs.length; i++) {String[] strings = removeIndex(arrs, i);TreeSet<String> process = process(strings);for (String string : process) {ans.add(arrs[i] + string);}}return ans;}public static String[] removeIndex(String[] arrs, int index) {int N = arrs.length;String[] ans = new String[N-1];int j = 0;for (int i = 0; i < arrs.length; i++) {if (i == index) continue;ans[j++] = arrs[i];}return ans;}
方法2 :贪心算法,维护优先队列,将目标字符串元素加入队列,最终的队列即使字典排序最小的组合。优先队列指定比较器
public static String lowestString2(String[] strs) {if (strs == null || strs.length == 0) return "";// 1 优先队列 将元素依次放入Arrays.sort(strs,new Comparator<String>() {@Overridepublic int compare(String o1, String o2) {return (o1 + o2).compareTo(o2 + o1);}});// 2 最终的队列就是结果StringBuilder sb = new StringBuilder();for (String str : strs) {sb.append(str);}return sb.toString();}
需要注意的是:往队列塞入元素时候,如果在比较i位置元素时候就确定大小顺序,i之前的所有元素是不会进行比较的,所以这里存在一个问题,咋判断当前插入元素和i之前的元素组合就不是最小的。论证如下
递推法
队列初始有两个字符串 a b 并且 ab 字典序小于 ba ,所以a排在b前面
当前字符串c需要进入队列,和b进行比较,字典序大于b所以排在b后面,
比较a 和 c的字典序
字符串ac可以转换为 N(a)*M(c)+N(c) K进制的数字, 其中M(c): Math.sqrt(K,c.length) N(a) 为字符串a对应的K进制数字
字符串ca可以转换为 N(c)*M(a)+N(a)
现在需要求 N(c)*M(a)+N(a) < N(a)*M(c)+N(c)
已知:
ab<ba
N(a)*M(b)+N(b) < N(b)*M(a)+N(a) 公式1
bc<cb
N(b)*M(c)+N(c) < N(c)*M(b)+N(b) 公式2 公式1 两边同时减去 N(b) 后同时乘 N(c) 因为数字不为负数所以不改变比较符号
N(a)*M(b)*N(c) < N(c)*N(b)*M(a) + N(a)*N(c) - N(b)*N(c) 公式3
公式2 两边同时减去 N(b) 后同时乘 N(a) 因为数字不为负数所以不改变比较符号
N(b)*M(c)*N(a) +N(c)*N(a)-N(b)*N(a) < N(c)*M(b)*N(a) 公式4
公式3 左边等于公式4右边 整理得
N(b)*M(c)*N(a) +N(c)*N(a)-N(b)*N(a) < N(c)*N(b)*M(a) + N(a)*N(c) - N(b)*N(c)
N(b)*M(c)*N(a)-N(b)*N(a) < N(c)*N(b)*M(a)- N(b)*N(c)
M(c)*N(a) -N(a) < N(c)*M(a) -N(c)
M(c)*N(a) +N(c) < N(c)*M(a) +N(a)
最终得
ac<ca
所以得到结论,ab<ba 并且 bc<cb 那么 ac 一定小于 ca如果队列前面有n个已排序字符串 现在往里面塞 字符串 s,并且 arr[n-1]+s < s+arr[n-1]
那么可以得到 [0,n-1) 和字符串 s 存在这样的关系 Str(0,n-2)+s < s+ Str(0,n-2)
其中Str(0,n-2) 为[0,n-2] 范围任意长度字符串组合最终得到结论,按照代码Comparator方式插入队列后,最终的队列就是字典序最小的组合