机器学习中梯度下降法的缺点

机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点:

1. 局部最小值和鞍点
  • 局部最小值问题: 对于非凸函数,梯度下降法可能会陷入局部最小值,而不是全局最小值。这意味着算法可能找到一个看似最优的点,但实际上在整个参数空间中存在更好的解。
  • 鞍点问题: 在高维空间中,鞍点(梯度为零,但既非局部最小值也非局部最大值的点)比局部最小值更常见。梯度下降法在遇到鞍点时可能会停滞不前,因为在这些点上梯度为零,导致更新停止。
2. 学习率的选择
  • 学习率过小: 如果学习率设置得太小,梯度下降法会非常缓慢地收敛,需要更多的迭代次数,从而增加训练时间。
  • 学习率过大: 如果学习率设置得太大,梯度下降法可能会在最小值附近震荡,甚至偏离最小值,导致算法无法收敛。
3. 特征缩放的敏感性

梯度下降法对特征的缩放非常敏感。如果数据集中的特征具有不同的尺度(例如,一个特征的范围是0到1,另一个特征的范围是0到1000),那么梯度下降法可能会非常缓慢地收敛。这是因为较大尺度的特征会对损失函数的梯度产生更大的影响。因此,通常需要对特征进行归一化或标准化处理。

4. 高维数据的挑战

在处理高维数据时,梯度下降法面临的挑战更加严峻。随着维度的增加,所需的计算资源和时间成指数级增长,这被称为“维度灾难”。此外,高维空间中空旷的区域更多,使得寻找全局最小值更加困难。

解决方案

尽管存在上述缺点,但研究人员已经开发出多种变体和技术来克服这些挑战,包括:

  • 使用动量(Momentum)和自适应学习率算法(如Adam、RMSprop):这些方法可以帮助算法跳出局部最小值和鞍点,同时自动调整学习率,以加快收敛速度并提高稳定性。
  • 特征缩放:通过归一化或标准化输入特征,可以加快收敛速度,减少学习率选择的敏感性。
  • 使用二阶优化方法:如牛顿法等,这些方法考虑了目标函数的二阶导数,可以更有效地处理某些类型的优化问题,尽管它们的计算成本更高。

总之,尽管梯度下降法有其局限性,但通过适当的策略和算法改进,它仍然是机器学习和深度学习中最强大和最流行的优化工具之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/690852.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据分析 - 机器学习

1:线性回归 线性回归是一种统计技术用于对输出变量与一个或多个输入变量之间的关系进行建模 用外行人的话来说,将其视为通过某些数据点拟合一条线,如下所示 以便在未知数据上进行预测,假设变量之间存在线性关系 点和线之间存在微小…

[ansible] playbook运用

一、复习playbook剧本 --- - name: first play for install nginx #设置play的名称gather_facts: false #设置不收集facts信息hosts: webservers:dbservers #指定执行此play的远程主机组remote_user: root #指定执行此play的用…

python绘制k线图均线图

AAPL.csv 数据文件 Date,Close,Volume,Open,High,Low 06/23/2023,$186.68,53117000,$185.55,$187.56,$185.01 06/22/2023,$187.00,51245330,$183.74,$187.045,$183.67 06/21/2023,$183.96,49515700,$184.90,$185.41,$182.5901 06/20/2023,$185.01,49799090,$184.41,$1…

15-55V输入自动升降压 光伏MPPT自动跟踪充电方案 大功率300瓦

1.MPPT原理--简介 MPPT,全称为Maximum Power Point Tracking,即最大功点跟踪,它是一种通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有效地…

【蓝桥杯】算法模板题(Floyd算法)

一.弗洛伊德算法 用途:用来求解多源点最短路径问题。 思想:Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法。 主要步骤: 1)初始化:使用邻接矩阵初始化dis…

GitHub仓库文件部署

目录 软件下载和安装 git创建仓库 Github仓库配置 git管理软件配置 Git管理 软件下载和安装 首先需要下载git,以及git管理软件,对其进行安装。 git创建仓库 首先需要创建仓库,在本地仓库文件夹cmd之后输入以下指令创建git仓库文件。 …

小米空气净化器2s使用体验

这个产品最早上市是2017年,我买回来实际上只用了1年就弃用了,性能不行,使用体验也不好。 打算买新的空气净化器,抽空吐槽一下。 这个净化器发售价是899,在当时来说算中下水平的,小米的,有米家…

Spring Boot与LiteFlow:轻量级流程引擎的集成与应用含完整过程

点击下载《Spring Boot与LiteFlow:轻量级流程引擎的集成与应用含完整过程》添加链接描述 1. 前言 本文旨在介绍Spring Boot与LiteFlow的集成方法,详细阐述LiteFlow的原理、使用流程、步骤以及代码注释。通过本文,读者将能够了解LiteFlow的特…

数据分析师SQL面试准备(part1)

1. SQL 万能框架 2. SQL的书写顺序,跟程序真的执行顺序不同 3. 4. 5. 6. 7. case when utilization 8. 9. 10. 11.

OpenHarmony—UIAbility组件间交互(设备内)

UIAbility是系统调度的最小单元。在设备内的功能模块之间跳转时,会涉及到启动特定的UIAbility,该UIAbility可以是应用内的其他UIAbility,也可以是其他应用的UIAbility(例如启动三方支付UIAbility)。 本章节将从如下场…

多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型

多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型 目录 多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型预测效果基本介绍程序设计参考资料 预测效果 基…

化学空间可视化(chemical space visualization)开源软件ChemPlot的安装及使用

文章目录 前言一、ChemPlot是什么?二、conda环境安装ChemPlot1. 创建conda环境2. 安装chemplot及需要的包3. 检验安装 三、使用步骤1. 化合物数据库可视化使用方法BBBP数据库的t-SNE降维后可视化:BBBP数据库的PCA降维后可视化:BBBP数据库的UM…

shapely 笔记:基本方法

1 线性方法 1.1 object.interpolate(distance[, normalizedFalse]) print(LineString([(0, 0), (0, 1), (1, 1)]).interpolate(1.5)) #POINT (0.5 1)print(LineString([(0, 0), (0, 1), (1, 1)]).interpolate(0.75, normalizedTrue)) #POINT (0.5 1) LineString([(0, 0), (0…

JimuReport积木报表 v1.7.0 变革版本发布,低代码报表设计工具

项目介绍 一款免费的数据可视化报表,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完成报…

从零开始的 dbt 入门教程 (dbt core 开发进阶篇)

引 在上一篇文章中,我们花了专门的篇幅介绍了 dbt 更多实用的命令,那么我们继续按照之前的约定来聊 dbt 中你可能会遇到的疑惑以及有用的概念,如果你是 dbt 初学者,我相信如下知识点一定会对你有极大的帮助: 了解 dbt_…

java基础训练题(2)

一、题目 1. 以下程序输出(D) public static void main(String[] args) {int num 2;switch (num) {case 1:num;case 2:num;case 3:num;default:num;break;}System.out.println(num);} } A:2 B:3 C:4 D&#xff…

STM32 TIM输入捕获测频率占空比库函数

目录 一、输入捕获初始化函数 TIM_ICInit TIM_PWMIConfig TIM_ICStructInit 二、主从触发模式对应函数 TIM_SelectInputTrigger TIM_SelectOutputTrigger TIM_SelectSlaveMode 三、配置分频器函数 TIM_SetIC1Prescaler TIM_SetIC2Prescaler TIM_SetIC3Prescaler T…

Kubernetes基础(二十二)-K8S的PV/PVC/StorageClass详解

1 概述 先来个一句话总结:PV、PVC是K8S用来做存储管理的资源对象,它们让存储资源的使用变得可控,从而保障系统的稳定性、可靠性。StorageClass则是为了减少人工的工作量而去自动化创建PV的组件。所有Pod使用存储只有一个原则:先规…

蓝牙BLE安全-SSP简单安全配对

SSP的配对过程由于可以根据设备的IO能力选择不同的关联模型,因此十分灵活,其提供了四种方式:Numeric Comparison、Passkey Entry、Just Works以及Out of Band (OOB) 。这里关联方式的选择实质上对后面的流程是有一定影响的,如Just…

使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记

目录 引言背景方法离散化离散化的导数算子速度插值 广义的半拉格朗日步重新网格化双向流固耦合和质量守恒 原文: Klingner, Bryan M., et al. “Fluid animation with dynamic meshes.” ACM SIGGRAPH 2006 Papers. 2006. 820-825. 引言 使用 [Alliez et al., 20…