Kubernetes基础(二十二)-K8S的PV/PVC/StorageClass详解

1 概述

先来个一句话总结:PV、PVC是K8S用来做存储管理的资源对象,它们让存储资源的使用变得可控,从而保障系统的稳定性、可靠性。StorageClass则是为了减少人工的工作量而去自动化创建PV的组件。所有Pod使用存储只有一个原则:先规划 → 后申请 → 再使用

1.1 PV概念

PV是对K8S存储资源的抽象,PV一般由运维人员创建和配置,供容器申请使用。

没有PV之前,服务器的磁盘没有分区的概念,有了PV之后,相当于通过PV对服务器的磁盘进行分区。

1.2 PVC概念

PVC 是Pod对存储资源的一个申请,主要包括存储空间申请、访问模式等。创建PV后,Pod就可以通过PVC向PV申请磁盘空间了。类似于某个应用程序向操作系统的D盘申请1G的使用空间。

PVC 创建成功之后,Pod 就可以以存储卷(Volume)的方式使用 PVC 的存储资源了。Pod 在使用 PVC 时必须与PVC在同一个Namespace下。

1.3 PV / PVC的关系

PV相当于对磁盘的分区,PVC相当于APP(应用程序)向某个分区申请多少空间。比如说安装WPS程序时,一般会告知我们安装它需要多少存储空间,让你选择在某个磁盘下安装。如果将来某个分区磁盘满了,也不会影响别的分区磁盘的使用。

一旦 PV 与PVC绑定,Pod就可以使用这个 PVC 了。如果在系统中没有满足 PVC 要求的 PV,PVC则一直处于 Pending 状态,直到系统里产生了一个合适的 PV。

1.4 StorageClass概念

K8S有两种存储资源的供应模式:静态模式和动态模式,资源供应的最终目的就是将适合的PV与PVC绑定:

  • 静态模式:管理员预先创建许多各种各样的PV,等待PVC申请使用。
  • 动态模式:管理员无须预先创建PV,而是通过StorageClass自动完成PV的创建以及与PVC的绑定。

StorageClass就是动态模式,根据PVC的需求动态创建合适的PV资源,从而实现存储卷的按需创建。

一般某个商业性的应用程序,会用到大量的Pod,如果每个Pod都需要使用存储资源,那么就需要人工时不时的去创建PV,这也是个麻烦事儿。解决方法就是使用动态模式:当Pod通过PVC申请存储资源时,直接通过StorageClass去动态的创建对应大小的PV,然后与PVC绑定,所以基本上PV → PVC是一对一的关系。

1.5 Provisioner概念

在创建 PVC 时需要指定 StorageClass,PVC 选择到对应的StorageClass后,与其关联的 Provisioner 组件来动态创建 PV 资源。

那Provisioner是个啥呢?其实就一个存储驱动,类似操作系统里的磁盘驱动。

StorageClass 资源对象的定义主要包括:名称、Provisioner、存储的相关参数配置、回收策略。StorageClass一旦被创建,则无法修改,只能删除重新创建。

PV和PVC的生命周期,包括4个阶段:资源供应(Provisioning)、资源绑定(Binding)、资源使用(Using)、资源回收(Reclaiming)。首先旧的有资源供应,说白了就是得有存储驱动,然后才能创建、绑定和使用、回收。

1.6 使用PV / PVC前后对比

1.6.1 通过描述对比

在没有使用PV、PVC之前,各个Pod都可以任意的向存储资源里(比如NFS)写数据,随便一个Pod都可以往磁盘上插一杠子,长期下去磁盘的管理会越来越混乱,然后导致数据使用超限,磁盘爆掉,最后导致磁盘上的所有应用全部挂掉。

为了解决这个问题,引入了PV、PVC的概念,达到限制Pod写入存储数据大小的目的,从而更好地保障了系统的可用性、稳定性。

有了PVC、PV之后,所有Pod使用存储资源,保持一个原则:先规划 → 后申请 → 再使用。

那你肯定有一个疑问,“StorageClass是自动化创建PV,跟原本的无序不可控是一样的效果啊,都可以随便占用存储资源啊”。

其实不然,使用StorageClass只是自动化了创建PV的流程,但依旧执行的是一个存储可控的流程。每个Pod使用多少存储空间是固定的,Pod没有办法超额使用存储空间,更不会影响到别的应用,要出故障也只是某个Pod自己出故障。

1.6.2 通过图片对比

没有使用PV、PVC之前的情况,如下面2张图:

有了PV、PVC之后的情况,如下图:

2 存储实战

在实践PV、PVC、StorageClass之前,需要读者朋友自行安装NFS服务器。文中演示的内容是通过yaml编排自动到NFS服务器起上创建PV。

2.1 Pod使用PV、PVC挂载存储卷

2.1.1 编排PV、PVC、Pod挂载PVC

文中演示的是:Pod的某个目录挂载到NFS的某个目录下。使用了nginx镜像,将html文件写在PV所在的NFS服务器上,最终可以看到利用PV / PVC 成功挂载上去了。yaml文件如下:

# PV编排
apiVersion: v1
kind: PersistentVolume
metadata:name: nfs-pv1namespace: dev1labels:pv: nfs-pv1
spec:capacity:storage: 1GiaccessModes:- ReadWriteOnce# Recycle 删除PVC会同步删除PV | Retain 删除PVC不会同步删除PVpersistentVolumeReclaimPolicy: Recyclenfs:path: /data/nfstest/share/pv1server: 10.20.1.20readOnly: false
---
# PVC 编排,通过selector查找PV,K8S里的资源查找都是通过selector查找label标签
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: nfs-pvc1namespace: dev1labels:pv: nfs-pvc1
spec:resources:requests:storage: 100MiaccessModes:- ReadWriteOnceselector:matchLabels:pv: nfs-pv1
---
# Pod挂载PVC,这里为了测试,直接通过node节点的hostPort暴露服务
apiVersion: v1
kind: Pod
metadata:name: webappnamespace: dev1labels:app: webapp
spec:containers:- name: webappimage: nginximagePullPolicy: IfNotPresentports:- containerPort: 80hostPort: 8081volumeMounts:- name: workdirmountPath: /usr/share/nginx/htmlvolumes:- name: workdirpersistentVolumeClaim:claimName: nfs-pvc1

执行kubectl命令。

然后查看pod的情况,发现pod一直处于创建中,如下:

于是查看pod的情况kubectl describe pod webapp -n dev1,发现如下异常信息:

 是因为没有在NFS上创建此文件夹。到NFS创建此文件夹之后,重启Pod,一切正常了,然后找到Pod所在Node节点。通过http://nodeip:port访问,可以看到成功的界面:

[root@k8s-master pv-pvc-storageclass]# kubectl get pods -n dev1 -owide  | grep webapp
webapp                                                 1/1     Running            0          4m17s   10.21.69.214   k8s-worker-3   <none>           <none>

此时因为nginx下还没有html页面,所以看不到内容。此时到NFS服务器对应的目录/data/nfstest/share/pv1下增加index.html页面,然后刷新页面即可,界面如下:

也可以通过进入到Pod内部,查看验证是够挂载成功。

执行进入Pod的命令kubectl exec -it webapp -n dev1 -- /bin/sh,可以看到如下页面:

2.2 Pod使用StorageClass自动挂载存储卷

2.2.1 安装 Provisioner

文中选择通过helm的方式安装nfs-subdir-external-provisioner,这种方式相对简单。安装文档、安装过程见下文:

安装文档

https://kubernetes.io/zh-cn/docs/concepts/storage/storage-classes/#nfs

https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner

安装过程

通过以下3个步骤完成nfs-subdir-external-provisioner的安装。

1)安装helm,本文以mac为例

brew install heml

2)安装nfs-subdir-external-provisioner,执行以下2个命令:

$ helm repo add nfs-subdir-external-provisioner https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner/
$ helm install nfs-subdir-external-provisioner nfs-subdir-external-provisioner/nfs-subdir-external-provisioner -n kube-system \--set image.repository=dyrnq/nfs-subdir-external-provisioner \--set nfs.server=10.20.1.20 \--set nfs.path=/data/nfstest/nfs-storage

这里注意几个参数:

  • image.repository:修改了镜像的地址,默认用的国外镜像很有可能拉不下来
  • nfs.server:你的NFS服务器地址
  • nfs.path:存储目录

3)查看helm安装的结果:

执行命令:helm list -A,查看helm安装结果:

查看是否创建了对应的pod,如果没有修改镜像地址会一直拉取失败,如下图:

修改镜像地址后成功启动Pod,如下图:

 2.2.2 使用StorageClass

文中演示的是:Pod利用StorageClass自动创建PV,同时在对应的存储目录上创建了文件,写入了数据。yaml文件如下:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:name: nfs-storage-1
provisioner: cluster.local/nfs-subdir-external-provisioner
parameters:# 设置为"false"时删除PVC不会保留数据,"true"则保留数据archiveOnDelete: "false"
mountOptions:# 指定NFS版本,这个需要根据NFS Server版本号设置- nfsvers=4
---
# 创建PVC
kind: PersistentVolumeClaim
apiVersion: v1
metadata:name: nfs-storage-pvc-1namespace: dev1
spec:storageClassName: nfs-storage-1    #需要与上面创建的storageclass的名称一致accessModes:- ReadWriteOnceresources:requests:storage: 10Mi
---
kind: Pod
apiVersion: v1
metadata:name: nfs-storage-pod-1namespace: dev1
spec:containers:- name: nfs-storage-pod-1image: busyboxcommand:- "/bin/sh"args:- "-c"- "touch /mnt/teststorage && echo 111 > /mnt/teststorage && exit 0 || exit 1"  ## 创建一个名称为"SUCCESS"的文件volumeMounts:- name: nfs-pvcmountPath: "/mnt"restartPolicy: "Never"volumes:- name: nfs-pvcpersistentVolumeClaim:claimName: nfs-storage-pvc-1

执行kubectl命令后,可以看到如下效果:

可以看到如我们预料的那样,通过storageClass自动创建了PV,同时在NFS对应的存储目录上创建了文件,写入了数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/690816.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝牙BLE安全-SSP简单安全配对

SSP的配对过程由于可以根据设备的IO能力选择不同的关联模型&#xff0c;因此十分灵活&#xff0c;其提供了四种方式&#xff1a;Numeric Comparison、Passkey Entry、Just Works以及Out of Band (OOB) 。这里关联方式的选择实质上对后面的流程是有一定影响的&#xff0c;如Just…

使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记

目录 引言背景方法离散化离散化的导数算子速度插值 广义的半拉格朗日步重新网格化双向流固耦合和质量守恒 原文&#xff1a; Klingner, Bryan M., et al. “Fluid animation with dynamic meshes.” ACM SIGGRAPH 2006 Papers. 2006. 820-825. 引言 使用 [Alliez et al., 20…

openai公司的chatgpt-3.5参数库内还未增加sora的语料信息

openai公司的chatgpt-3.5参数库内还未增加sora的语料信息&#xff01;我想通过openai公司的chatgpt3.5来了解一下关于sora的技术信息&#xff0c;结果呢&#xff0c;它竟然回答不知道sora是什么。看来&#xff0c;sora的语料库信息还未来得及加入chatgpt3.5的训练模型中。 如图…

每日学习总结20240219

每日总结 20240219 1.文件类型.csv CSV文件是一种以逗号分隔值&#xff08;Comma-Separated Values&#xff09;为标记的文本文件&#xff0c;它可以用来存储表格数据。每一行表示一条记录&#xff0c;而每一条记录中的字段则使用逗号或其他特定的分隔符进行分隔。 常用场景…

HTTP特性

大家好我是苏麟 , 今天说说HTTP特性. 资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) 到目前为止&#xff0c;HTTP 常见到版本有 HTTP/1.1&#xff0c;HTTP/2.0,HTTP/3.0&#xff0c;不同版本的 HTTP 特性是不一样的。 这里先用 HTTP/1.1 版本给大家介…

Golang - 使用CentOS 7 安装Golang环境

文章目录 操作步骤 操作步骤 为在CentOS 7上安装Go语言环境&#xff0c;可以按照以下步骤进行操作&#xff1a; 下载Go语言包&#xff1a; 从官方网站 https://golang.org/dl/ 下载适用于Linux的Go语言包。 解压缩Go语言包&#xff1a; 使用以下命令解压缩下载的Go语言包 […

CyberDAO:web3时代的引领者

Web3.0正在改写着世界运行的规则&#xff0c;AGI将为人类未来的生产效率、工作方式与目标带来改变&#xff0c;区块链经过十余年发展开启了去中心化新格局&#xff0c;带来生产关系的变革。人类正在从过往以时间换取收入、听命完成工作&#xff0c;转变为以个性化、自主追求人生…

OpenAI Sora视频模型技术原理报告解读

▌01. OpenAI Sora 视频生成模型技术报告总结 •不管是在视频的保真度、长度、稳定性、一致性、分辨率、文字理解等方面。 •技术细节写得比较泛&#xff08;防止别人模仿&#xff09;大概就是用视觉块编码&#xff08;visual patch&#xff09;的方式&#xff0c;把不同格…

数据采集三防平板丨三防平板电脑丨停车场应用

随着现代科技的不断发展&#xff0c;三防平板已经成为许多人工作和生活的必备工具。在停车场这个场景中&#xff0c;三防平板的应用可以大大提高停车场管理的效率和安全性。 停车场是现代城市交通管理的重要组成部分&#xff0c;它直接关系到城市交通的流畅和公共安全。停车场…

RK3588平台开发系列讲解(视频篇)ffmpeg 的移植

文章目录 一、ffmpeg 介绍二、ffmpeg 的组成三、ffmpeg 依赖库沉淀、分享、成长,让自己和他人都能有所收获!😄 📢ffmpeg 是一种多媒体音视频处理工具,具备视频采集功能、视频抓取图像、视频格式转换、给视频加水印并能将视频转化为流等诸多强大的功能。它采用 LGPL 或 G…

Rofin罗芬Laser激光DQ80设备操作说明书

Rofin罗芬Laser激光DQ80设备操作说明书

计算机视觉的应用23-OpenAI发布的文本生成视频大模型Sora的原理解密

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用23-OpenAI发布的文本生成视频大模型Sora的原理解密。本文概况性地将Sora模型生成视频主要分为三个步骤&#xff1a;视频压缩网络、空间时间潜在补丁提取以及视频生成的Transformer模型。 文章目录…

【lesson62】网络通信UdpSocket版

文章目录 UdpSocketUdpServer.hppUdpServer类成员变量解释成员函数解释 UdpServer的实现ServerIinit的实现socketbindhtonsinet_addr具体实现 ServerStart的实现recvfromsendtontohsinet_ntoa具体实现 ~UdpServer函数实现UdpServer.hpp整体完整代码 UdpServer.ccUdpClient.ccTh…

CDP和Chrome

CDP和Chrome CDP和WebDriver Protocol WebDriver和 Chrome DevTools Protocol&#xff08;CDP&#xff09; 是用于自动化浏览器的两个主要协议&#xff0c;大多数的浏览器自动化工具都是基于上述其中之一来实现的。可以通过这两种形式来和浏览器交互&#xff0c;通过代码来控…

探索海洋世界,基于DETR(DEtection TRansformer)模型开发构建海洋场景下海洋生物检测识别分析系统

前面的博文中&#xff0c;开发实践过海底相关生物检测识别的项目&#xff0c;对于海洋场景下的海洋生物检测则很少有所涉及&#xff0c;这里本文的主要目的就是想要开发构建基于DETR的海洋场景下的海洋生物检测识别系统。 首先看下实例效果&#xff1a; DETR (DEtection TRans…

【机器学习笔记】 15 机器学习项目流程

机器学习的一般步骤 数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序&#xff0c;包括检查数据一致性&#xff0c;处理无效值和缺失值等。与问卷审核不同&#xff0c;录入后的数据清理一般是由计算机而不是人工完成。 探索性数据分析(EDA 探索性数据…

Elasticsearch查询报错 Result window is too large

一现象&#xff1a; es数据分页查询前端提示系统异常&#xff0c;后端报错日志 二根本原因&#xff1a; 默认情况下&#xff0c;Elasticsearch 限制了 from size 参数的组合不能超过 10,000 条记录&#xff0c;用于防止查询大数据集时对系统资源的过度消耗 三解决办法&#…

沁恒CH32V30X学习笔记09---使用TIM 外部时钟1模式实现硬件计数

TIM 外部时钟1使用 定时器时钟 通过框图可知;外部时钟1模式下仅仅只有通道1 和通道2 可以输入脉冲 简单示例教程 void TIM1_ETRClockMode1_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);TIM_CounterModeConfig(TIM1, TIM_CounterMode_Up)

机器学习---强化学习

1. 什么是强化学习 在连接主义学习中&#xff0c;在学习的方式有三种&#xff1a;非监督学习(unsupervised learning)、监督学习 (supervised leaning)和强化学习。监督学习也称为有导师的学习&#xff0c;需要外界存在一个“教师”对给定 输入提供应有的输出结果&#xff0…

Android 11.0 mtp在锁屏模式和息屏时禁止访问mtp文件夹功能实现

1.前言 在11.0的系统rom产品定制化开发中,由于系统对于mtp模式访问文件夹没有限制,就是在锁屏息屏状态下也是可以访问文件夹的,由于产品的需要 要求在锁屏和息屏的情况下,禁止访问文件夹,就是需要实现如图效果 2.mtp在锁屏模式和息屏时禁止访问mtp文件夹功能实现的核心…