[计算机网络]---Https协议

前言

作者:小蜗牛向前冲

名言:我可以接受失败,但我不能接受放弃

  如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 

目录

 一、https协议

1、什么是加密

2、为什么要加密

3、几种加密方式 

二、https加密过程探究 

 1、数据摘要 && 数据指纹 

2、数据签名

3、⽅案 1 - 只使⽤对称加密

4、 ⽅案 2 - 只使⽤⾮对称加密

5、⽅案 3 - 双⽅都使⽤⾮对称加密

6、⽅案 4 - ⾮对称加密 + 对称加密

​编辑

7、中间⼈攻击 - 针对上⾯的场景 

 8、CA认证和理解数据签名

9、⽅案 5 - ⾮对称加密 + 对称加密 + 证书认证 


本期学习:什么是https协议,https协议是怎么进行加密的 

 一、https协议

HTTPS 也是⼀个应⽤层协议. 是在 HTTP 协议的基础上引⼊了⼀个加密层. HTTP 协议内容都是按照⽂本的⽅式明⽂传输的. 这就导致在传输过程中出现⼀些被篡改的情况

1、什么是加密

  • 加密就是把 明⽂ (要传输的信息)进⾏⼀系列变换, ⽣成 密⽂ .
  • 解密就是把 密⽂ 再进⾏⼀系列变换, 还原成 明⽂ .

 这里我们要对a进行加密,那么我们就以200为key为密钥,a^key就会得到一个b这里面的内容给被人看就是乱码的,这就进行了加密,在发送到网络中可以保证起安全性,接收方在对密文进行解密就可以得到想要的内容。

2、为什么要加密

我们在网站上下载一个天天动听,当我们下载完成后发现变成了qq浏览器。

这是为什么?

  •  由于我们通过⽹络传输的任何的数据包都会经过运营商的⽹络设备(路由器, 交换机等), 那么运营商的⽹ 络设备就可以解析出你传输的数据内容, 并进⾏篡改. 点击 "下载按钮", 其实就是在给服务器发送了⼀个 HTTP 请求, 获取到的 HTTP 响应其实就包含了该 APP 的下载链接. 运营商劫持之后, 就发现这个请求是要下载天天动听, 那么就⾃动的把交给⽤⼾的响应 给篡改成 "QQ浏览器" 的下载地址了.

所以:因为http的内容是明⽂传输的,明⽂数据会经过路由器、wifi热点、通信服务运营商、代理服务 器等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传 输的信息且不被双⽅察觉,这就是 中间⼈攻击 ,所以我们才需要对信息进⾏加密

3、几种加密方式 

对称加密

  • 采⽤单钥密码系统的加密⽅法,同⼀个密钥可以同时⽤作信息的加密和解密,这种加密⽅法称为对 称加密,也称为单密钥加密,特征:加密和解密所⽤的密钥是相同的 。
  • 常⻅对称加密算法(了解):DES、3DES、AES、TDEA、Blowfish、RC2等 。
  • 特点:算法公开、计算量⼩、加密速度快、加密效率⾼

 对称加密其实就是通过同⼀个 "密钥" , 把明⽂加密成密⽂, 并且也能把密⽂解密成明⽂.

上面我们进行逆或加密就是对称加密

⾮对称加密

  • 需要两个密钥来进⾏加密和解密,这两个密钥是公开密钥(public key,简称公钥)和私有密钥 (private key,简称私钥)。
  • 常⻅⾮对称加密算法(了解):RSA,DSA,ECDSA。
  • 特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,⽽使得加密解密速度没有对 称加密解密的速度快。

公钥和私钥是配对的. 最⼤的缺点就是运算速度⾮常慢,⽐对称加密要慢很多

.这⾥举⼀个简单的⽣活上的例⼦:

A 要给 B ⼀些重要的⽂件, 但是 B 可能不在. 于是 A 和 B 提前做出约定: B 说: 我桌⼦上有个盒⼦, 然后我给你⼀把锁, 你把⽂件放盒⼦⾥⽤锁锁上, 然后我回头拿着钥匙来开锁 取⽂件. 在这个场景中, 这把锁就相当于公钥, 钥匙就是私钥. 公钥给谁都⾏(不怕泄露), 但是私钥只有 B ⾃⼰持 有. 持有私钥的⼈才能解密.

二、https加密过程探究 

在进行网络通信的过程中,我们要解决二个问题,数据被监听,数据被篡改。

上面我们通过加密方式一定程度上可以解决监听问题,但是如果知道我们的数据没有被更改呢?

 1、数据摘要 && 数据指纹 

  • 数字指纹(数据摘要),其基本原理是利⽤单向散列函数(Hash函数)对信息进⾏运算,⽣成⼀串固定⻓度 的数字摘要。数字指纹并不是⼀种加密机制,但可以⽤来判断数据有没有被窜改。
  • 摘要常⻅算法:有MD5、SHA1、SHA256、SHA512等,算法把⽆限的映射成有限,因此可能会有 碰撞(两个不同的信息,算出的摘要相同,但是概率⾮常低)。
  • 摘要特征:和加密算法的区别是,摘要严格意义不是加密,因为没有解密,只不过从摘要很难反推 原信息,通常⽤来进⾏数据对⽐

为什么要数据摘要?

不知道大家在百度网盘上传输过资料吗?百度的服务器是如何做到不重复存放上传的文件呢?

对应一个非常大的文件,我们进行hash算法,就生成一个固定的字符串,我们可以对比百度网盘中是否存放了自己上传的文件,如果有就不在存放,这就节省了不必要的资源损耗。、

2、数据签名

摘要经过加密,就得到数字签名

数字签名是一种用于验证数字信息完整性、真实性和不可否认性的技术手段。它通常用于确保数据在传输或存储过程中不被篡改,并且可以追溯到发送者。

数字签名的过程涉及使用某种加密算法对原始数据进行哈希运算,并使用发送者的私钥对哈希值进行加密,生成数字签名。接收者可以使用发送者的公钥对数字签名进行解密,并对原始数据进行哈希运算,然后将解密后的签名与计算出的哈希值进行比对,以验证数据的完整性和真实性。

数字签名具有以下特性:

  1. 完整性: 数字签名可以确保数据在传输或存储过程中没有被篡改。
  2. 真实性: 数字签名可以证明数据确实来自于签名者。
  3. 不可否认性: 签名者不能否认已签名的数据,因为签名是由其私钥生成的,只有拥有相应私钥的签名者才能生成有效签名。

上面我们知道数据摘要和数据签名。为了探究https协议,下面我们进行不同加密方探索

3、⽅案 1 - 只使⽤对称加密

从理论上如果通信双⽅都各⾃持有同⼀个密钥X,且没有别⼈知道,这两⽅的通信安全当然是可以被保证的,但是我们很容易理解服务器会有密钥,但是我们怎么把这个密钥给客户端呢?

直接发送就会容易让中间人(黑客)劫持,从而让加密形同虚设。

那我们加密密钥x发送不可以?那客户端如何进行解密呢?不是还需要密钥,这是陷入了是先有鸡还是先有蛋的问题。

所以单纯的用对称加密是不可靠的。

4、 ⽅案 2 - 只使⽤⾮对称加密

鉴于⾮对称加密的机制,如果服务器先把公钥以明⽂⽅式传输给浏览器,之后浏览器向服务器传数据 前都先⽤这个公钥加密好再传,从客⼾端到服务器信道似乎是安全的(有安全问题),因为只有服务器有 相应的私钥能解开公钥加密的数据。

但是服务器到浏览器的这条路怎么保障安全?

如果服务器⽤它的私钥加密数据传给浏览器,那么浏览器⽤公钥可以解密它,⽽这个公钥是⼀开始通 过明⽂传输给浏览器的,若这个公钥被中间⼈劫持到了,那他也能⽤该公钥解密服务器传来的信息 了。

5、⽅案 3 - 双⽅都使⽤⾮对称加密

  • 1服务端拥有公钥S与对应的私钥S',客⼾端拥有公钥C与对应的私钥C'。
  • 2. 客⼾和服务端交换公钥。
  • 3. 客⼾端给服务端发信息:先⽤S对数据加密,再发送,只能由服务器解密,因为只有服务器有私钥 S'。
  • 4. 服务端给客⼾端发信息:先⽤C对数据加密,在发送,只能由客⼾端解密,因为只有客⼾端有私钥 C'。

存在问题:

  • 非常慢
  • 然后存在安全问题

这里非常慢我可以理解,要进行推送公钥导致效率低下,但是怎么会存在安全问题。

大家可以想如果在C客户端和S服务器间存在一个中间人 ,在C明文推送的时候,进行拦截后将自己的公钥A发送给服务器,这时候服务器是不能判断公钥是否为客户端发送,然后他用公钥A进行加密,中间人不就可以用自己的密钥解密了。所以说是不安全的。

6、⽅案 4 - ⾮对称加密 + 对称加密

  • 服务端具有⾮对称公钥S和私钥S'。
  • 客⼾端发起https请求,获取服务端公钥S。
  • 客⼾端在本地⽣成对称密钥C, 通过公钥S加密, 发送给服务器.。
  • 由于中间的⽹络设备没有私钥, 即使截获了数据, 也⽆法还原出内部的原⽂, 也就⽆法获取到对称密 钥(真的吗?)。
  • 服务器通过私钥S'解密, 还原出客⼾端发送的对称密钥C. 并且使⽤这个对称密钥加密给客⼾端返回 的响应数据. 。
  • 后续客⼾端和服务器的通信都只⽤对称加密即可. 由于该密钥只有客⼾端和服务器两个主机知道, 其 他主机/设备不知道密钥即使截获数据也没有意义。

 这里先通过对称加密交换公钥,后面通过对称加密进行通信,这样效率就会比方案3高,但是仍会存在中间人攻击的情况

7、中间⼈攻击 - 针对上⾯的场景 

确实,在⽅案2/3/4中,客⼾端获取到公钥S之后,对客⼾端形成的对称秘钥X⽤服务端给客⼾端的公钥 S进⾏加密,中间⼈即使窃取到了数据,此时中间⼈确实⽆法解出客⼾端形成的密钥X,因为只有服务 器有私钥S' 但是中间⼈的攻击,如果在最开始握⼿协商的时候就进⾏了,那就不⼀定了,假设hacker已经成功成 为中间⼈

  • 1. 服务器具有⾮对称加密算法的公钥S,私钥S'。
  • 2. 中间⼈具有⾮对称加密算法的公钥M,私钥M' 。
  • 3. 客⼾端向服务器发起请求,服务器明⽂传送公钥S给客⼾端。
  • 4. 中间⼈劫持数据报⽂,提取公钥S并保存好,然后将被劫持报⽂中的公钥S替换成为⾃⼰的公钥M, 并将伪造报⽂发给客⼾端 。
  • 5. 客⼾端收到报⽂,提取公钥M(⾃⼰当然不知道公钥被更换过了),⾃⼰形成对称秘钥X,⽤公钥M加 密X,形成报⽂发送给服务器 。6. 中间⼈劫持后,直接⽤⾃⼰的私钥M'进⾏解密,得到通信秘钥X,再⽤曾经保存的服务端公钥S加 密后,将报⽂推送给服务器
  • 7. 服务器拿到报⽂,⽤⾃⼰的私钥S'解密,得到通信秘钥X 。
  • 8. 双⽅开始采⽤X进⾏对称加密,进⾏通信。但是⼀切都在中间⼈的掌握中,劫持数据,进⾏窃听甚 ⾄修改,都是可以的 。

上⾯的攻击⽅案,同样适⽤于⽅案2,⽅案3 问题本质出在哪⾥了呢?客⼾端⽆法确定收到的含有公钥的数据报⽂,就是⽬标服务器发送过来的

为了解决中间人攻击的问题,我们引入了证书。

 8、CA认证和理解数据签名

CA认证

服务端在使⽤HTTPS前,需要向CA机构申领⼀份数字证书,数字证书⾥含有证书申请者信息、公钥信 息等。服务器把证书传输给浏览器,浏览器从证书⾥获取公钥就⾏了,证书就如⾝份证,证明服务端 公钥的权威性

 ​​​​​​

认证流程

 证书书格式

这个 证书 可以理解成是⼀个结构化的字符串, ⾥⾯包含了以下信息:

• 证书发布机构

• 证书有效期

• 公钥

•证书所有者

• 签名

需要注意的是:申请证书的时候,需要在特定平台⽣成查,会同时⽣成⼀对密钥,即公钥和私 钥。这对密钥对⼉就是⽤来在⽹络通信中进⾏明⽂加密以及数字签名的。 其中公钥会随着CSR⽂件,⼀起发给CA进⾏权威认证,私钥服务端⾃⼰保留,⽤来后续进⾏通信(其 实主要就是⽤来交换对称秘钥) 。

理解数据签名

签名的形成是基于⾮对称加密算法的,注意,⽬前暂时和https没有关系,不要和https中的公钥私钥搞 混了

 当服务端申请CA证书的时候,CA机构会对该服务端进⾏审核,并专⻔为该⽹站形成数字签名,过程如 下:

  • 1. CA机构拥有⾮对称加密的私钥A和公钥A'
  • 2. CA机构对服务端申请的证书明⽂数据进⾏hash,形成数据摘要
  • 3. 然后对数据摘要⽤CA私钥A'加密,得到数字签名S

9、⽅案 5 - ⾮对称加密 + 对称加密 + 证书认证 

在客⼾端和服务器刚⼀建⽴连接的时候, 服务器给客⼾端返回⼀个 证书,证书包含了之前服务端的公 钥, 也包含了⽹站的⾝份信息.

客⼾端进⾏认证 当客⼾端获取到这个证书之后, 会对证书进⾏校验(防⽌证书是伪造的).

  • • 判定证书的有效期是否过期。
  • • 判定证书的发布机构是否受信任(操作系统中已内置的受信任的证书发布机构)。
  • • 验证证书是否被篡改: 从系统中拿到该证书发布机构的公钥, 对签名解密, 得到⼀个 hash 值(称为数 据摘要), 设为 hash1. 然后计算整个证书的 hash 值, 设为 hash2. 对⽐ hash1 和 hash2 是否相等. 如 果相等, 则说明证书是没有被篡改过的 

中间⼈有没有可能篡改该证书?

  • 中间⼈篡改了证书的明⽂。
  • 由于他没有CA机构的私钥,所以⽆法hash之后⽤私钥加密形成签名,那么也就没法办法对篡改后 的证书形成匹配的签名。
  • 如果强⾏篡改,客⼾端收到该证书后会发现明⽂和签名解密后的值不⼀致,则说明证书已被篡改, 证书不可信,从⽽终⽌向服务器传输信息,防⽌信息泄露给中间⼈ 。

中间⼈整个掉包证书? 

  • 因为中间⼈没有CA私钥,所以⽆法制作假的证书(为什么?)。
  • 所以中间⼈只能向CA申请真证书,然后⽤⾃⼰申请的证书进⾏。
  • 这个确实能做到证书的整体掉包,但是别忘记,证书明⽂中包含了域名等服务端认证信息,如果整 体掉包,客⼾端依旧能够识别出来。
  • 永远记住:中间⼈没有CA私钥,所以对任何证书都⽆法进⾏合法修改,包括⾃⼰的。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/690256.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件之RocketMQ源码分析(十)

Namesrv启动流程 第一步:脚本和启动参数配置。 启动命令 nohup ./bin/mqnamesrv -c ./conf/namesrv.conf > dev/null 2>&1 & 通过脚本配置启动基本参数,比如配置文件路径、JVM参数,调用NamesrvStartup.main()方法,解析命令行的…

【PyQt6] 框选截图功能

1 简介 书接上回, 全屏截图实现起来很简单, 来点稍微复杂点的, 框选截图 原理很简单, 弄个控件实现全屏半透视, 在全屏控件上画一个选框或者再弄一个几乎全透的子控件,实现鼠标拖动,缩放,移动, 键盘wasd 微调 用一个控件实现起来会很完美, 但是逻辑全部堆砌在一起,看代码会很…

Mac电脑玩《幻兽帕鲁》卡怎么办?2024年最新解决方法

幻兽帕鲁目前已经在steam卖出了100多万份数,可谓是爆火现象级的游戏。如今在游戏中,我们可以实现工农业自动化,为了实现自动化,将手工作业交给帕鲁就尤为重要。建造工厂,并安排帕鲁在其中工作吧。只要有足够的食物&…

K8s服务发现组件之CoreDNS/NodeLocalDNS /kubeDNS

1 coredns 1.1 概述 1.1.1 什么是CoreDNS CoreDNS 是一个灵活可扩展的 DNS 服务器,可以作为 Kubernetes 集群 DNS,在Kubernetes1.12版本之后成为了默认的DNS服务。 与 Kubernetes 一样,CoreDNS 项目由 CNCF 托管。 coredns在K8S中的用途,…

spring aop @annotation的用法

直接看原文: spring aop annotation的用法-CSDN博客 -------------------------------------------------------------------------------------------------------------------------------- annotation用在定义连接点时,对连接点进行限制。比如我们想对标注了…

prometheus+mysql_exporter监控mysql

prometheus+mysql_exporter监控mysql 一.安装mysql 1.下载:wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 2.安装客户端:yum -y install mysql57-community-release-el7-10.noarch.rpm 3.安装服务端:yum -y install mysql-community-se…

day10:分割链表

问题描述: 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 示例 1: 输入:head [1,4…

【HTML】SVG实现炫酷的描边动画

前沿 今天闲来无事,看到Antfu大佬的个性签名,觉得还是非常炫酷的,于是也想要搞一个自己的个性签名用来装饰自己的门面,不过由于手写的签名太丑了,遂放弃。于是尝试理解原理,深入研究此等密法,终…

VLM多模态图像识别小模型UForm

参考:https://github.com/unum-cloud/uform https://huggingface.co/unum-cloud/uform-gen2-qwen-500m https://baijiahao.baidu.com/s?id=1787054120353641459&wfr=spider&for=pc demo:https://huggingface.co/spaces/unum-cloud/uform-gen2-qwen-500m-demo UF…

市场复盘总结 20240219

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 二进三: 进级率中 22% 最常用的…

Shiro-05-5 分钟入门 shiro 安全框架实战笔记

序言 大家好,我是老马。 前面我们学习了 web 安全之 Spring Security 入门教程 这次我们来一起学习下另一款 java 安全框架 shiro。 什么是Apache Shiro? Apache Shiro是一个功能强大且易于使用的Java安全框架,它为开发人员提供了一种直…

Redis 数据类型及其常用命令二(bitmap、geo、hyperloglog、bitfield、stream)

上文中我们介绍了Redis常使用的5中数据类型,对于一些特殊的场景,我们需要使用特殊的数据类型,本文将详细介绍5种特殊的数据类型。 1、bitmap 类型 用String类型作为底层数据结构实现的一种统计二值状态的数据类型。位图本质是数组&#xff0…

《剑指 Offer》专项突破版 - 面试题 45 和 46 : 二叉树最低层最左边的值和二叉树的右侧视图(C++ 实现)

目录 面试题 45 : 二叉树最低层最左边的值 面试题 46 : 二叉树的右侧视图 面试题 45 : 二叉树最低层最左边的值 题目: 如何在一棵二叉树中找出它最低层最左边节点的值?假设二叉树中最少有一个节点。例如,在下图所示的二叉树中最低层最左边…

Codeforces Round 924 (Div. 2)题解(A-D)

A - Rectangle Cutting 链接&#xff1a;A - Rectangle Cutting 思路 考虑横边和纵边&#xff0c;若为偶数&#xff0c;则从中间分开&#xff0c;重新组合为一个长方形&#xff0c;检测是否与原来的长方形一致。 代码 #include <bits/stdc.h> using namespace std;i…

探秘OpenAI的神奇之作:Sora技术揭秘

探秘OpenAI的神奇之作&#xff1a;Sora技术揭秘 1. 引言 在当今科技快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;正日益成为各个领域的关键技术。而在人工智能领域中&#xff0c;OpenAI公司一直以来都扮演着重要的角色。他们的最新创新——Sora技术&#x…

基于python的遥感影像灰色关联矩阵纹理特征计算

遥感影像纹理特征是描述影像中像素间空间关系的统计特征&#xff0c;常用于地物分类、目标识别和变化检测等遥感应用中。常见的纹理特征计算方式包括灰度共生矩阵&#xff08;GLCM&#xff09;、灰度差异矩阵&#xff08;GLDM&#xff09;、灰度不均匀性矩阵&#xff08;GLRLM&…

常见面试题:TCP的四次挥手和TCP的滑动窗口

说一说 TCP 的四次挥手。 挥手即终止 TCP 连接&#xff0c;所谓的四次挥手就是指断开一个 TCP 连接时。需要客户端和服务端总共发出四个包&#xff0c;已确认连接的断开在 socket 编程中&#xff0c;这一过程由客户端或服务端任意一方执行 close 来触发。这里我们假设由客户端…

unity学习(29)——GameInfo角色信息

1.把GameInfo.cs PlayerModel.cs Vector3.cs Vector4.cs PlayerStateConstans.cs GameState.cs依次粘到model文件夹中&#xff0c;此时项目没有错误&#xff0c;如下图所示&#xff1b; 对应处所修改的代码如下&#xff1a; case LoginProtocol.LOGIN_SRES://1 {Debug.Log(&qu…

考研查分,别再只知道研招网了!

查分时间基本已经敲定在2月26日左右了。倒计时7天&#xff01;每年查询分数的时候经常因为查询人数太多&#xff0c;进不去研招网&#xff0c;还有哪些方法可以查询分数呢&#xff1f; 我为大家整理了四种常用的查成绩方式&#xff0c;附带部分已公布查分时间院校名单。 一、…

Java学习心得感悟

在我踏入Java学习的道路之前&#xff0c;我对编程只是一知半解&#xff0c;对于代码的世界充满了好奇和向往。然而&#xff0c;当我真正开始学习Java时&#xff0c;我才意识到&#xff0c;学习Java不仅仅是学习一门编程语言&#xff0c;更是一种思维方式和解决问题的能力的培养…