K8s服务发现组件之CoreDNS/NodeLocalDNS /kubeDNS

1 coredns

1.1 概述

1.1.1 什么是CoreDNS

CoreDNS 是一个灵活可扩展的 DNS 服务器,可以作为 Kubernetes 集群 DNS,在Kubernetes1.12版本之后成为了默认的DNS服务。 与 Kubernetes 一样,CoreDNS 项目由 CNCF 托管。

coredns在K8S中的用途,主要是用作服务发现,也就是服务(应用)之间相互定位的过程。

在k8s中,用service资源代理pod,通过暴露service资源的固定地址(集群IP),来解决以上POD资源变化产生的IP变动问题,但是针对service还存在以下问题:

  • service IP地址难以记忆
  • service资源可能也会被销毁和创建
  • pod ip本身也有需要暴漏的需求

为了解决以上问题,引入了coredns,在K8S,其主要用于服务发现,也就是服务(应用)之间相互定位的过程。

1.1.2  CoreDNS  特点

  • Plugins(插件化)
  • Service Discovery(服务发现)
  • Fast and Flexible(快速和弹性)
  • Simplicity(简单)

1.1.3   DNS服务概述

service发现是k8s中的一个重要机制,其基本功能为:在集群内通过服务名对服务进行访问,即需要完成从服务名到ClusterIP的解析。
k8s主要有两种service发现机制:环境变量和DNS。没有DNS服务的时候,k8s会采用环境变量的形式,但一旦有多个service,环境变量会变复杂,为解决该问题,我们使用DNS服务。

DNS服务在kubernetes中经历了三个阶段(SkyDNS-》KubeDNS-》CoreDNS):

  1. 【第一阶段】在kubernetes 1.2版本时,dns服务使用的是由SkyDNS提供的,由4个容器组成:kube2sky、skydns、etcd和healthz。etcd存储dns记录;kube2sky监控service变化,生成dns记录;skydns读取服务,提供查询服务;healthz提供健康检查。
  2. 【第二阶段】在kubernetes 1.4版本开始使用KubeDNS,有3个容器组成:kubedns、dnsmasq和sidecar。kubedns监控service变化,并记录到内存(存到内存提高性能)中;dnsmasq获取dns记录,提供dns缓存,提供dns查询服务;sidecar提供健康检查。
  3. 【第三阶段】从kubernetes >=1.11版本开始,dns服务有CoreDNS提供,coredns支持自定义dns记录及配置upstream dns server,可以统一管理内部dns和物理dns。coredns只有一个coredns容器。下面是coredns的架构。

1.1.4  coredns的优缺点

1.1.4.1 优点
  • 非常灵活的配置,可以根据不同的需求给不同的域名配置不同的插件
  • k8s 1.9 版本后的默认的 dns 解析
1.1.4.2 缺点
  • 缓存的效率不如 dnsmasq,对集群内部域名解析的速度不如 kube-dns (10% 左右)

1.2 coredns的部署 

coredns部署参考:CoreDNS实战(一)-构建高性能、插件化的DNS服务器_coredns安装-CSDN博客

部署后,可在dns中,通过如下命令查询coredns是否运行正常

dig @127.0.0.1 -p 53 www.example.com

1.3 coredns配置

1.3.1 K8s DNS策略

Kubernetes 中 Pod 的 DNS 策略有四种类型:

  • Default:Pod 继承所在主机上的 DNS 配置;
  • ClusterFirst:K8s 的默认设置;先在 K8s 集群配置的 coreDNS 中查询,查不到的再去继承自主机的上游 nameserver 中查询;
  • ClusterFirstWithHostNet:对于网络配置为 hostNetwork 的 Pod 而言,其 DNS 配置规则与 ClusterFirst 一致;
  • None:忽略 K8s 环境的 DNS 配置,只认 Pod 的 dnsConfig 设置。

1.3.2 resolv.conf

在部署 pod 的时候,如果用的是 K8s 集群的 DNS,那么 kubelet 在起 pause 容器的时候,会将其 DNS 解析配置初始化成集群内的配置。

如创建了一个叫 my-nginx 的 deployment,其 pod 中的 resolv.conf 文件如下:

# DNS 服务的 IP,即coreDNS 的 clusterIP
nameserver 192.168.111.20# DNS search 域。解析域名的时候,将要访问的域名依次带入 search 域,进行 DNS 查询
# 比如访问your-nginx,其进行的 DNS 域名查询的顺序是:your-nginx.default.svc.cluster.local. -> your-nginx.svc.cluster.local. -> your-nginx.cluster.local.
search default.svc.cluster.local svc.cluster.local cluster.local# 其他项,最常见的是 dnots。dnots 指的是如果查询的域名包含的点 “.” 小于 5,则先走search域,再用绝对域名;如果查询的域名包含点数大于或等于 5,则先用绝对域名,再走search域
# K8s 中默认的配置是 5。
options ndots:5

1.3.3 coreDNS Corefile 文件 

CoreDNS 实现了应用的插件化,用户可以选择所需的插件编译到可执行文件中;CoreDNS 的配置文件是 Corefile 形式的,coreDNS 的 configMap如下所示:

apiVersion: v1
data:Corefile: |.:53 {errorshealth# 指明 cluster.local 后缀的域名,都是 kubernetes 内部域名,coredns 会监听 service 的变化来维护域名关系,所以cluster.local 相关域名都在这里解析kubernetes cluster.local in-addr.arpa ip6.arpa {pods insecureupstreamfallthrough in-addr.arpa ip6.arpa}# CoreDNS 的监控地址为:http://localhost:9153/metrics prometheus :9153# proxy 指 coredns 中没有找到记录,则去 /etc/resolv.conf 中的 nameserver 请求解析,而 coredns 容器中的 /etc/resolv.conf 是继承自宿主机的。# 实际效果是如果不是 k8s 内部域名,就会去默认的 dns 服务器请求解析,并返回给 coredns 的请求者。forward . /etc/resolv.confcache 30    # 允许缓存loop    # 如果找到循环,则检测简单的转发循环并停止 CoreDNS 进程reload  # 允许 Corefile 的配置自动更新。在更改 ConfigMap 后两分钟,修改生效loadbalance # 这是一个循环 DNS 负载均衡器,可以在答案中随机化 A,AAAA 和 MX 记录的顺序}
kind: ConfigMap
metadata:creationTimestamp: "2019-06-10T03:19:01Z"name: corednsnamespace: kube-system

1.3.4  CoreDNS配置解析

下面是coredns的配置模板

apiVersion: v1
kind: ConfigMap
metadata:name: corednsnamespace: namespace-test
data:Corefile: |.:53 {errorshealthreadykubernetes cluster.local  10.200.0.0/16 {pods insecureupstream 114.114.114.114fallthrough in-addr.arpa ip6.arpanamespaces namespace-test}prometheus :9153forward . /etc/resolv.confcache 30loopreloadloadbalance}

CoreDNS的主要功能是通过插件系统实现的。它实现了一种链式插件的结构,将dns的逻辑抽象成了一个个插件。

常见的插件如下:

  • loadbalance:提供基于dns的负载均衡功能
  • loop:检测在dns解析过程中出现的简单循环问题
  • cache:提供前端缓存功能
  • health:对Endpoint进行健康检查
  • kubernetes:从kubernetes中读取zone数据
  • etcd:从etcd读取zone数据,可以用于自定义域名记录
  • file:从文件中读取zone数据
  • hosts:使用/etc/hosts文件或者其他文件读取zone数据,可以用于自定义域名记录
  • auto:从磁盘中自动加载区域文件
  • reload:定时自动重新加载Corefile配置文件的内容
  • forward:转发域名查询到上游dns服务器
  • proxy:转发特定的域名查询到多个其他dns服务器,同时提供到多个dns服务器的负载均衡功能
  • prometheus:为prometheus系统提供采集性能指标数据的URL
  • pprof:在URL路径/debug/pprof下提供运行是的西能数据
  • log:对dns查询进行日志记录
  • errors:对错误信息镜像日志记录

2 node local dns

2.1 DNS间歇性5秒延迟

由于 Linux 内核中的缺陷,在 Kubernetes 集群中很可能会碰到恼人的 DNS 间歇性 5 秒延迟问题。

原因是镜像底层库 DNS 解析行为默认使用 UDP 在同一个 socket 并发 A 和 AAAA 记录请求,由于 UDP 无状态,两个请求可能会并发创建 conntrack 表项,如果最终 DNAT 成同一个集群 DNS 的 Pod IP 就会导致 conntrack 冲突,由于 conntrack 的创建和插入是不加锁的,最终后面插入的 conntrack 表项就会被丢弃,从而请求超时,默认 5s 后重试,造成现象就是 DNS 5 秒延时。

具体原因可参见:

issues-56903
Weave works分析

2.2  NodeLocal DNSCache

NodeLocal DNSCache通过在集群上运行一个dnsCache daemonset来提高clusterDNS性能和可靠性。相比于纯coredns方案,nodelocaldns + coredns方案能够大幅降低DNS查询timeout的频次,提升服务稳定性。

nodelocaldns配置如下,nodelocaldns只配置了一个server,监听默认的UDP 53端口,4个zone。域名后缀为cluster.local的所有域名以及in-addr.arpa和ip6.arpa形式域名走coredns进行域名解析,其他外部域名使用宿主机的/etc/resolv.conf文件配置的nameserver进行解析。缓存分为 256 个分片,每个分片默认最多可容纳 39 个项目 - 总大小为 256 * 39 = 9984 个项目。


# 其中cluster.local、in-addr.arpa、ip6.arpa表示kubernetes插件会处理域名后缀为cluster.local的所有域名以及处理所有的in-addr.arpa中的反向dns查找和ip6.arpa形式域名,其中kuberne# 集群域名后缀是在kubelet参数中配置的,默认值为cluster.localapiVersion: v1
data:Corefile: |cluster.local:53 {errorscache {success 9984 30 # 对于成功的缓存最多缓存9984条域名解析记录,缓存时间为30sdenial 9984 5   # 对于失败的缓存最多缓存9984条域名解析记录,缓存时间为5s}reloadloopbind 169.254.25.10forward . 10.233.0.3 {force_tcp}prometheus :9253health 169.254.25.10:9254}in-addr.arpa:53 {errorscache 30reloadloopbind 169.254.25.10forward . 10.233.0.3 {force_tcp}prometheus :9253}ip6.arpa:53 {errorscache 30reloadloopbind 169.254.25.10forward . 10.233.0.3 {force_tcp}prometheus :9253}.:53 {errorscache 30reloadloopbind 169.254.25.10forward . /etc/resolv.confprometheus :9253}
kind: ConfigMap
......

nodelocaldns + coredns方案,DNS查询流程如下所示:

3 kubeDNS

3.1  结构

kubeDNS由3个部分组成。

  • kubedns: 依赖 client-go 中的 informer 机制监视 k8s 中的 Service 和 Endpoint 的变化,并将这些结构维护进内存来服务内部 DNS 解析请求。
  • dnsmasq: 区分 Domain 是集群内部还是外部,给外部域名提供上游解析,内部域名发往 10053 端口,并将解析结果缓存,提高解析效率。
  • sidecar: 对 kubedns 和 dnsmasq 进行健康检查和收集监控指标。
     

以下是结构图:

5.2  kubedns

在 kubedns 包含两个部分, kubedns 和 skydns。

其中 kubedns 是负责监听 k8s 集群中的 Service 和 Endpoint 的变化,并将这些变化通过 treecache 的数据结构缓存下来,作为 Backend 给 skydns 提供 Record。 而真正负责dns解析的其实是 skydns(skydns 目前有两个版本 skydns1 和 skydns2,下面所说的是 skydns2,也是当前 kubedns 所使用的版本)。

我们可以先看下 treecache,以下是 treecache 的数据结构;

// /dns/pkg/dns/treecache/treecache.go#54
type treeCache struct {ChildNodes map[string]*treeCacheEntries    map[string]interface{}
}

treeCache 的结构类似于目录树。从根节点到叶子节点的每个路径与一个域名是相对应的,顺序是颠倒的。它的叶子节点只包含 Entries,非叶子节点只包含 ChildNodes。叶子节点中保存的就是 SkyDNS 定义的 msg.Service 结构,可以理解为 DNS 记录。

在 Records 接口方法实现中,只需根据域名查找到对应的叶子节点,并返回叶子节点中保存的所有msg.Service 数据。K8S 就是通过这样的一个数据结构来保存 DNS 记录的,并替换了 etcd( skydns2 默认使用 etcd 作为存储),来提供基于内存的高效存储。

我们可以直接阅读代码来了解 kubedns 的启动流程。

首先看它的结构体

// dns/cmd/kube-dns/app/server.go#43
type KubeDNSServer struct {// DNS domain name. = cluster.local.domain         stringhealthzPort    int// skydns启动的地址和端口dnsBindAddress stringdnsPort        int// 配置上游查询的地址,虽然 skydns 也支持上游域名解析,// 但是在 kubedns 一般情况下并不会由它来做,因为上游域名会被 dnsmasq 提前处理nameServers    stringkd             *dns.KubeDNS
}

接下来可以看到一个叫 NewKubeDNSServerDefault 的函数,它初始化了 KubeDNSServer。并执行 server.Run() 启动了服务。那么我们来看下 NewKubeDNSServerDefault 这个方法做了什么。

// dns/cmd/kube-dns/app/server.go#53
func NewKubeDNSServerDefault(config *options.KubeDNSConfig) *KubeDNSServer {// 初始化 kubeclientkubeClient, err := newKubeClient(config)// 同步配置文件,如果观察到配置信息改变,就会重启skydnsvar configSync dnsconfig.Syncswitch {// 同时配置了 configMap 和 configDir 会报错case config.ConfigMap != "" && config.ConfigDir != "":glog.Fatal("Cannot use both ConfigMap and ConfigDir")case config.ConfigMap != "":configSync = dnsconfig.NewConfigMapSync(kubeClient, config.ConfigMapNs, config.ConfigMap)case config.ConfigDir != "":configSync = dnsconfig.NewFileSync(config.ConfigDir, config.ConfigPeriod)default:conf := dnsconfig.Config{Federations: config.Federations}if len(config.NameServers) > 0 {conf.UpstreamNameservers = strings.Split(config.NameServers, ",")}configSync = dnsconfig.NewNopSync(&conf)}return &KubeDNSServer{domain:         config.ClusterDomain,healthzPort:    config.HealthzPort,dnsBindAddress: config.DNSBindAddress,dnsPort:        config.DNSPort,nameServers:    config.NameServers,kd:             dns.NewKubeDNS(kubeClient, config.ClusterDomain, config.InitialSyncTimeout, configSync),}
}

可以看到这里 dnsconfig 会返回一个 configSync 的 interface 用来实时同步配置,也就是 kube-dns 这个 configmap,或者是本地的 dir(但一般来说这个 dir 也是由 configmap 挂载进去的)。在方法的最后 dns.NewKubeDNS 返回一个 KubeDNS 的结构体。那么我们看下这个函数初始化了哪些东西。

// dns/pkg/dns/dns.go#124
func NewKubeDNS(client clientset.Interface, clusterDomain string, timeout time.Duration, configSync config.Sync) *KubeDNS {kd := &KubeDNS{kubeClient:          client,domain:              clusterDomain,// 初始化目录树cache:               treecache.NewTreeCache(),cacheLock:           sync.RWMutex{},nodesStore:          kcache.NewStore(kcache.MetaNamespaceKeyFunc),reverseRecordMap:    make(map[string]*skymsg.Service),clusterIPServiceMap: make(map[string]*v1.Service),domainPath:          util.ReverseArray(strings.Split(strings.TrimRight(clusterDomain, "."), ".")),initialSyncTimeout:  timeout,configLock: sync.RWMutex{},configSync: configSync,}kd.setEndpointsStore()kd.setServicesStore()return kd
}

可以看到kd.setEndpointsStore() 和 kd.setServicesStore() 这两个方法会在 informer中注册 Service 和 Endpoint 的回调,用来观测这些资源的变动并作出相应的调整。

// dns/pkg/dns/dns.go#499
func (kd *KubeDNS) newPortalService(service *v1.Service) {// 构建了一个空的叶子节点, recordLabel是clusterIP经过 FNV-1a hash运算后得到的32位数字// recordValue 的结构// &msg.Service{//  Host:     service.Spec.ClusterIP,//  Port:     0,//  Priority: defaultPriority,//  Weight:   defaultWeight,//  Ttl:      defaultTTL,// }subCache := treecache.NewTreeCache()recordValue, recordLabel := util.GetSkyMsg(service.Spec.ClusterIP, 0)subCache.SetEntry(recordLabel, recordValue, kd.fqdn(service, recordLabel))// 查看service的ports列表,将每个port信息转换成skydns.Service并加入上面构建的叶子节点for i := range service.Spec.Ports {port := &service.Spec.Ports[i]if port.Name != "" && port.Protocol != "" {srvValue := kd.generateSRVRecordValue(service, int(port.Port))l := []string{"_" + strings.ToLower(string(port.Protocol)), "_" + port.Name}subCache.SetEntry(recordLabel, srvValue, kd.fqdn(service, append(l, recordLabel)...), l...)}}subCachePath := append(kd.domainPath, serviceSubdomain, service.Namespace)host := getServiceFQDN(kd.domain, service)reverseRecord, _ := util.GetSkyMsg(host, 0)kd.cacheLock.Lock()defer kd.cacheLock.Unlock()// 将构建好的叶子节点加入treecachekd.cache.SetSubCache(service.Name, subCache, subCachePath...)kd.reverseRecordMap[service.Spec.ClusterIP] = reverseRecordkd.clusterIPServiceMap[service.Spec.ClusterIP] = service
}

再看一下当 Endpoint 添加到集群时,kubedns 会如何处理

// dns/pkg/dns/dns.go#460
func (kd *KubeDNS) addDNSUsingEndpoints(e *v1.Endpoints) error {// 获取ep所属的svcsvc, err := kd.getServiceFromEndpoints(e)if err != nil {return err}// 判断这个svc,如果这个svc不是 headless,就不会处理此次添加,因为 svc 有 clusterIP 的情况,在处理// svc 的增删改时已经都被处理了。所以当 ep 属于 headless svc 时,需要将这个 ep 加入到 cacheif svc == nil || v1.IsServiceIPSet(svc) || svc.Spec.Type == v1.ServiceTypeExternalName {// No headless service found corresponding to endpoints object.return nil}return kd.generateRecordsForHeadlessService(e, svc)
}// 把 endpoint 添加到它所属的 headless service 的缓存下
func (kd *KubeDNS) generateRecordsForHeadlessService(e *v1.Endpoints, svc *v1.Service) error {subCache := treecache.NewTreeCache()generatedRecords := map[string]*skymsg.Service{}// 遍历这个 ep 下所有的 ip+port,并将它们添加到 treecache 中for idx := range e.Subsets {for subIdx := range e.Subsets[idx].Addresses {address := &e.Subsets[idx].Addresses[subIdx]endpointIP := address.IPrecordValue, endpointName := util.GetSkyMsg(endpointIP, 0)if hostLabel, exists := getHostname(address); exists {endpointName = hostLabel}subCache.SetEntry(endpointName, recordValue, kd.fqdn(svc, endpointName))for portIdx := range e.Subsets[idx].Ports {endpointPort := &e.Subsets[idx].Ports[portIdx]if endpointPort.Name != "" && endpointPort.Protocol != "" {srvValue := kd.generateSRVRecordValue(svc, int(endpointPort.Port), endpointName)l := []string{"_" + strings.ToLower(string(endpointPort.Protocol)), "_" + endpointPort.Name}subCache.SetEntry(endpointName, srvValue, kd.fqdn(svc, append(l, endpointName)...), l...)}}// Generate PTR records only for Named Headless service.if _, has := getHostname(address); has {reverseRecord, _ := util.GetSkyMsg(kd.fqdn(svc, endpointName), 0)generatedRecords[endpointIP] = reverseRecord}}}subCachePath := append(kd.domainPath, serviceSubdomain, svc.Namespace)kd.cacheLock.Lock()defer kd.cacheLock.Unlock()for endpointIP, reverseRecord := range generatedRecords {kd.reverseRecordMap[endpointIP] = reverseRecord}kd.cache.SetSubCache(svc.Name, subCache, subCachePath...)return nil
}

整体流程其实和 Service 差不多,只不过在添加 cache 之前会先去查找Endpoint所属的 Service,然后不同的是 Endpoint 的叶子节点中的host存储的是 EndpointIP,而 Service 的叶子节点的 host 中存储的是 fqdn。最后再看一下 SkyDNS 的启动过程。


// 启动skydns server
func (d *KubeDNSServer) startSkyDNSServer() {skydnsConfig := &server.Config{Domain:  d.domain,DnsAddr: fmt.Sprintf("%s:%d", d.dnsBindAddress, d.dnsPort),}if err := server.SetDefaults(skydnsConfig); err != nil {glog.Fatalf("Failed to set defaults for Skydns server: %s", err)}// 使用d.kd作为存储的后端,因为kubedns实现了skydns.Backend的接口// type Backend interface {//     HasSynced() bool//     Records(name string, exact bool) ([]msg.Service, error)//     ReverseRecord(name string) (*msg.Service, error)// }s := server.New(d.kd, skydnsConfig)// ...d.kd.SkyDNSConfig = skydnsConfiggo s.Run()
}

kubedns总结

  • kubedns 有两个模块,kubedns和skydns,kubedns负责监听Service和Endpoint并将它们转换为 skydns 能够理解的格式,以目录树的形式存在内存中。
  • 因为 skydns 是以 etcd 的标准作为后端存储的,所以为了兼容 etcd ,kubedns 在某些错误信息方面也都以 etcd 的格式进行定义的。因此 kubedns 的作用其实可以理解为为 skydns 提供存储。

5.3  dnsmasq

dnsmasq 也由两个部分组成

  • dnsmasq-nanny,容器里的1号进程,不负责处理 DNS LookUp 请求,只负责管理 dnsmasq。
  • dnsmasq,负责处理 DNS LookUp 请求,并缓存结果。

dnsmasq-nanny 负责监控 config 文件(/etc/k8s/dns/dnsmasq-nanny,也就是kube-dns-config这个 configmap 所挂载的位置)的变化(每 10s 查看一次),如果 config 变化了就会Kill掉 dnsmasq,并重新启动它。


// dns/pkg/dnsmasq/nanny.go#198
// RunNanny 启动 nanny 服务并处理配置变化
func RunNanny(sync config.Sync, opts RunNannyOpts, kubednsServer string) {//  ...configChan := sync.Periodic()for {select {// ...// 观察到config变化case currentConfig = <-configChan:if opts.RestartOnChange {// 直接杀掉dnsmasq进程nanny.Kill()nanny = &Nanny{Exec: opts.DnsmasqExec}// 重新加载配置nanny.Configure(opts.DnsmasqArgs, currentConfig, kubednsServer)// 重新启动dnsmasq进程nanny.Start()} else {glog.V(2).Infof("Not restarting dnsmasq (--restartDnsmasq=false)")}break}}
}

让我们看下 sync.Periodic() 这个函数做了些什么

// dns/pkg/dns/config/sync.go#81
func (sync *kubeSync) Periodic() <-chan *Config {go func() {// Periodic函数中设置了一个Tick,每10s会去load一下configDir下// 所有的文件,并对每个文件进行sha256的摘要计算// 并将这个结果返回。resultChan := sync.syncSource.Periodic()for {syncResult := <-resultChan// processUpdate函数会比较新的文件的版本和旧的// 文件的版本,如果不一致会返回changed。// 值得注意的是有三个文件是需要单独处理的// federations// stubDomains// upstreamNameservers// 当这三个文件变化是会触发单独的函数(打印日志)config, changed, err := sync.processUpdate(syncResult, false)if err != nil {continue}if !changed {continue}sync.channel <- config}}()return sync.channel
}

dnsmasq 中是如何加载配置的呢?

// dns/pkg/dnsmasq/nanny.go#58
// Configure the nanny. This must be called before Start().
// 这个函数会配置 dnsmasq,Nanny 每次 Kill 掉 dnsmasq 后,调用 Start() 之前都会调用这个函数
// 重新加载配置。
func (n *Nanny) Configure(args []string, config *config.Config, kubednsServer string) {// ...for domain, serverList := range config.StubDomains {resolver := &net.Resolver{PreferGo: true,Dial: func(ctx context.Context, network, address string) (net.Conn, error) {d := net.Dialer{}return d.DialContext(ctx, "udp", kubednsServer)},}// 因为 stubDomain 中可以是以 host:port 的形式存在,所以这里还要做一次 上游的 dns 解析for _, server := range serverList {if isIP := (net.ParseIP(server) != nil); !isIP {switch {// 如果 server 是以 cluster.local(不知道为什么这里是 hardCode 的)结尾的,就会发往 kubednsServer 进行 DNS 解析// 因为上面已经配置了 d.DialContext(ctx, "udp", kubednsServer)case strings.HasSuffix(server, "cluster.local"):// ...resolver.LookupIPAddr(context.Background(), server)default:// 如果没有以 cluster.local 结尾,就会走外部解析 DNS// ...net.LookupIP(server)}}}}// ...
}

5.4   sidecar

sidecar 启动后会在内部开启一个协程,并在循环中每默认 5s 向 kubedns 发送一次 dns 解析。并记录解析结果。

sidecar 提供了两个http的接口 /healthcheck/kubedns 和 /healthcheck/dnsmasq 给 k8s 用作 livenessProbe 的健康检查。每次请求,sidecar 会将上述记录的 DNS 解析结果返回。

5.5   kubedns的优缺点

5.5.1 优点

  • 依赖 dnsmasq ,性能有保障

5.5.2 缺点

  • 因为 dnsmasq-nanny 重启 dnsmasq 的方式,先杀后起,方式比较粗暴,有可能导致这段时间内大量的 DNS 请求失败。
  • dnsmasq-nanny 检测文件的方式,可能会导致以下问题:
    • dnsmasq-nanny 每次遍历目录下的所有文件,然后用 ioutil.ReadFile 读取文件内容。如果目录下文件数量过多,可能出现在遍历的同时文件也在被修改,遍历的速度跟不上修改的速度。 这样可能导致遍历完了,某个配置文件才更新完。那么此时,你读取的一部分文件数据并不是和当前目录下文件数据完全一致,本次会重启 dnsmasq。进而,下次检测,还认为有文件变化,到时候,又重启一次 dnsmasq。这种方式不优雅,但问题不大。
    • 文件的检测,直接使用 ioutil.ReadFile 读取文件内容,也存在问题。如果文件变化,和文件读取同时发生,很可能你读取完,文件的更新都没完成,那么你读取的并非一个完整的文件,而是坏的文件,这种文件,dnsmasq-nanny 无法做解析,不过官方代码中有数据校验,解析失败也问题不大,大不了下个周期的时候,再取到完整数据,再解析一次。

6 CoreDNS和KubeDNS的性能对比

在 CoreDNS 的官网中已有详细的性能测试报告,

  • 对于内部域名解析 KubeDNS 要优于 CoreDNS 大约 10%,可能是因为 dnsmasq 对于缓存的优化会比 CoreDNS 要好
  • 对于外部域名 CoreDNS 要比 KubeDNS 好 3 倍。但这个值大家看看就好,因为 kube-dns 不会缓存 Negative cache。但即使 kubeDNS 使用了 Negative cache,表现仍然也差不多
  • CoreDNS 的内存占用情况会优于 KubeDNS

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/690252.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring aop @annotation的用法

直接看原文: spring aop annotation的用法-CSDN博客 -------------------------------------------------------------------------------------------------------------------------------- annotation用在定义连接点时&#xff0c;对连接点进行限制。比如我们想对标注了…

prometheus+mysql_exporter监控mysql

prometheus+mysql_exporter监控mysql 一.安装mysql 1.下载:wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 2.安装客户端:yum -y install mysql57-community-release-el7-10.noarch.rpm 3.安装服务端:yum -y install mysql-community-se…

day10:分割链表

问题描述&#xff1a; 给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 示例 1&#xff1a; 输入&#xff1a;head [1,4…

【HTML】SVG实现炫酷的描边动画

前沿 今天闲来无事&#xff0c;看到Antfu大佬的个性签名&#xff0c;觉得还是非常炫酷的&#xff0c;于是也想要搞一个自己的个性签名用来装饰自己的门面&#xff0c;不过由于手写的签名太丑了&#xff0c;遂放弃。于是尝试理解原理&#xff0c;深入研究此等密法&#xff0c;终…

VLM多模态图像识别小模型UForm

参考:https://github.com/unum-cloud/uform https://huggingface.co/unum-cloud/uform-gen2-qwen-500m https://baijiahao.baidu.com/s?id=1787054120353641459&wfr=spider&for=pc demo:https://huggingface.co/spaces/unum-cloud/uform-gen2-qwen-500m-demo UF…

市场复盘总结 20240219

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 22% 最常用的…

Shiro-05-5 分钟入门 shiro 安全框架实战笔记

序言 大家好&#xff0c;我是老马。 前面我们学习了 web 安全之 Spring Security 入门教程 这次我们来一起学习下另一款 java 安全框架 shiro。 什么是Apache Shiro&#xff1f; Apache Shiro是一个功能强大且易于使用的Java安全框架&#xff0c;它为开发人员提供了一种直…

Redis 数据类型及其常用命令二(bitmap、geo、hyperloglog、bitfield、stream)

上文中我们介绍了Redis常使用的5中数据类型&#xff0c;对于一些特殊的场景&#xff0c;我们需要使用特殊的数据类型&#xff0c;本文将详细介绍5种特殊的数据类型。 1、bitmap 类型 用String类型作为底层数据结构实现的一种统计二值状态的数据类型。位图本质是数组&#xff0…

《剑指 Offer》专项突破版 - 面试题 45 和 46 : 二叉树最低层最左边的值和二叉树的右侧视图(C++ 实现)

目录 面试题 45 : 二叉树最低层最左边的值 面试题 46 : 二叉树的右侧视图 面试题 45 : 二叉树最低层最左边的值 题目&#xff1a; 如何在一棵二叉树中找出它最低层最左边节点的值&#xff1f;假设二叉树中最少有一个节点。例如&#xff0c;在下图所示的二叉树中最低层最左边…

Codeforces Round 924 (Div. 2)题解(A-D)

A - Rectangle Cutting 链接&#xff1a;A - Rectangle Cutting 思路 考虑横边和纵边&#xff0c;若为偶数&#xff0c;则从中间分开&#xff0c;重新组合为一个长方形&#xff0c;检测是否与原来的长方形一致。 代码 #include <bits/stdc.h> using namespace std;i…

探秘OpenAI的神奇之作:Sora技术揭秘

探秘OpenAI的神奇之作&#xff1a;Sora技术揭秘 1. 引言 在当今科技快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;正日益成为各个领域的关键技术。而在人工智能领域中&#xff0c;OpenAI公司一直以来都扮演着重要的角色。他们的最新创新——Sora技术&#x…

基于python的遥感影像灰色关联矩阵纹理特征计算

遥感影像纹理特征是描述影像中像素间空间关系的统计特征&#xff0c;常用于地物分类、目标识别和变化检测等遥感应用中。常见的纹理特征计算方式包括灰度共生矩阵&#xff08;GLCM&#xff09;、灰度差异矩阵&#xff08;GLDM&#xff09;、灰度不均匀性矩阵&#xff08;GLRLM&…

常见面试题:TCP的四次挥手和TCP的滑动窗口

说一说 TCP 的四次挥手。 挥手即终止 TCP 连接&#xff0c;所谓的四次挥手就是指断开一个 TCP 连接时。需要客户端和服务端总共发出四个包&#xff0c;已确认连接的断开在 socket 编程中&#xff0c;这一过程由客户端或服务端任意一方执行 close 来触发。这里我们假设由客户端…

unity学习(29)——GameInfo角色信息

1.把GameInfo.cs PlayerModel.cs Vector3.cs Vector4.cs PlayerStateConstans.cs GameState.cs依次粘到model文件夹中&#xff0c;此时项目没有错误&#xff0c;如下图所示&#xff1b; 对应处所修改的代码如下&#xff1a; case LoginProtocol.LOGIN_SRES://1 {Debug.Log(&qu…

考研查分,别再只知道研招网了!

查分时间基本已经敲定在2月26日左右了。倒计时7天&#xff01;每年查询分数的时候经常因为查询人数太多&#xff0c;进不去研招网&#xff0c;还有哪些方法可以查询分数呢&#xff1f; 我为大家整理了四种常用的查成绩方式&#xff0c;附带部分已公布查分时间院校名单。 一、…

Java学习心得感悟

在我踏入Java学习的道路之前&#xff0c;我对编程只是一知半解&#xff0c;对于代码的世界充满了好奇和向往。然而&#xff0c;当我真正开始学习Java时&#xff0c;我才意识到&#xff0c;学习Java不仅仅是学习一门编程语言&#xff0c;更是一种思维方式和解决问题的能力的培养…

【AI视野·今日Sound 声学论文速览 第四十九期】Wed, 17 Jan 2024

AI视野今日CS.Sound 声学论文速览 Wed, 17 Jan 2024 Totally 23 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Sound Papers From Coarse to Fine: Efficient Training for Audio Spectrogram Transformers Authors Jiu Feng, Mehmet Hamza Erol, Joon Son Chung,…

Pandas Series Mastery: 从基础到高级应用的完整指南【第83篇—Series Mastery】

Pandas Series Mastery: 从基础到高级应用的完整指南 Pandas是Python中一流的数据处理库&#xff0c;它为数据科学家和分析师提供了强大的工具&#xff0c;简化了数据清理、分析和可视化的流程。在Pandas中&#xff0c;Series对象是最基本的数据结构之一&#xff0c;它为我们处…

Spring Security基础学习

一、SpringSecurity框架简介 二、SpringSecurity入门案例 三、SpringSecurity Web权限方案 四、SpringSecurity微服务权限方案 五、SpringSecurity原理总结

Unity中的Lerp插值的使用

Unity中的Lerp插值使用 前言Lerp是什么如何使用Lerp 前言 平时在做项目中插值的使用避免不了&#xff0c;之前一直在插值中使用存在误区&#xff0c;在这里浅浅记录一下。之前看的博客或者教程还多都存在一个“永远到达不了&#xff0c;只能无限接近”的一个概念。可能是之前脑…