VFH特征的使用(一)

一、SHOT特征描述符可视化

C++

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/registration/correspondence_estimation.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/registration/transformation_estimation_svd.h> 
#include <pcl/features/3dsc.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/features/vfh.h>
using namespace std;namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}typedef pcl::PointCloud<pcl::PointXYZ> pointcloud;
typedef pcl::PointCloud<pcl::Normal> pointnormal;
typedef pcl::PointCloud<pcl::VFHSignature308> VFHFeature;VFHFeature::Ptr compute_pfh_feature(pointcloud::Ptr input_cloud, pcl::search::KdTree<pcl::PointXYZ>::Ptr tree)
{pointnormal::Ptr normals(new pointnormal);pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;n.setInputCloud(input_cloud);n.setNumberOfThreads(6);n.setSearchMethod(tree);n.setKSearch(10);n.compute(*normals);pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);return vfh_fe_vfh;}void extract_keypoint(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& keypoint)
{pcl::PointCloud<pcl::PointWithScale> result;const float min_scale = 5.f;const int n_octaves = 3;const int n_scales_per_octave = 15;const float min_contrast = 0.01f;pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree);sift.setScales(min_scale, n_octaves, n_scales_per_octave);sift.setMinimumContrast(min_contrast);sift.compute(result);copyPointCloud(result, *keypoint);}int main(int argc, char** argv)
{pointcloud::Ptr source_cloud(new pointcloud);pointcloud::Ptr target_cloud(new pointcloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *source_cloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view2.pcd", *target_cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr s_k(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr t_k(new pcl::PointCloud<pcl::PointXYZ>);extract_keypoint(source_cloud, s_k);extract_keypoint(target_cloud, t_k);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());VFHFeature::Ptr source_pfh = compute_pfh_feature(s_k, tree);VFHFeature::Ptr target_pfh = compute_pfh_feature(t_k, tree);pcl::registration::CorrespondenceEstimation<pcl::VFHSignature308, pcl::VFHSignature308> crude_cor_est;boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);crude_cor_est.setInputSource(source_pfh);crude_cor_est.setInputTarget(target_pfh);crude_cor_est.determineCorrespondences(*cru_correspondences);Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer(new pcl::visualization::PCLVisualizer("v1"));viewer->setBackgroundColor(0, 0, 0);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>target_color(target_cloud, 255, 0, 0);viewer->addPointCloud<pcl::PointXYZ>(target_cloud, target_color, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>input_color(source_cloud, 0, 255, 0);viewer->addPointCloud<pcl::PointXYZ>(source_cloud, input_color, "input cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "input cloud");viewer->addCorrespondences<pcl::PointXYZ>(s_k, t_k, *cru_correspondences, "correspondence");while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}return 0;
}

关键代码解析:

    pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);
  1. pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);:这行代码定义了一个指向 pcl::PointCloud<pcl::VFHSignature308> 类型的智能指针 vfh_fe_vfh,用于存储计算得到的VFH描述符。

  2. pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;:这行代码创建了一个VFH估计器对象 vfh,用于计算VFH描述符。参数说明如下:

    • pcl::PointXYZ:输入点云的点类型,这里使用的是三维坐标点 PointXYZ
    • pcl::Normal:输入点云的法线类型,用于计算VFH描述符时需要输入点云的法线信息。
    • pcl::VFHSignature308:VFH描述符的类型,这里使用的是308维的VFH描述符。
  3. vfh.setInputCloud(input_cloud);:设置输入点云。input_cloud 是指向输入点云的指针或智能指针,其中包含了点的三维坐标信息。

  4. vfh.setInputNormals(normals);:设置输入法线。normals 是指向输入点云法线的指针或智能指针,其中包含了点云的法线信息。

  5. vfh.setSearchMethod(tree);:设置搜索方法。tree 是指向用于邻域搜索的搜索树对象的指针或智能指针。这个搜索树用于查找每个点的邻域以计算其VFH描述符。

  6. vfh.compute(*vfh_fe_vfh);:计算VFH描述符。这行代码会使用输入的点云和法线信息,以及设置的搜索方法,来计算每个点的VFH描述符,并将结果存储在 vfh_fe_vfh 中。

参数设置的影响如下:

  • 输入点云的质量和分辨率会直接影响到计算得到的VFH描述符的准确性。
  • 输入法线的准确性和一致性对VFH描述符的计算也有很大影响。
  • 搜索方法的选择会影响计算VFH描述符时的邻域搜索效率和准确性,不同的搜索方法可能适用于不同场景下的点云数据。

确保输入数据的准确性和适用性,并根据实际情况选择合适的参数设置,可以得到高质量的VFH描述符。

结果:

我把上面的图片转了个向,可以清楚的发现只有一条对应线 

 

由于VFH(视点特征直方图)是一种全局描述符,它为整个点云生成单一的描述子,这与pcl::SampleConsensusInitialAlignment需要源点云和特征点之间一对一对应的要求不匹配。使用VFH时,你只会得到一个全局特征向量,这意味着不适用于那些需要点对点对应关系的方法。 

可以采用的某些策略:

  1. 使用VFH进行预筛选: 如果有多个目标点云,可以使用VFH描述子来快速筛选出与源点云最相似的目标点云,然后再使用局部特征进行精确配准。这种方法在数据库搜索或者配准多个点云时很有用。

  2. 结合局部特征: 对于每个点云,你可以计算VFH描述子,用于全局配准的粗略定位。随后,对于每个点云,你也计算局部特征描述子,如FPFH,用于精细配准。你可以先用VFH找到大致的配准位置,然后用FPFH做为局部搜索的依据,两者相结合可以提高配准的精度。

  3. 多模态数据融合: 如果你有额外的传感器数据,比如RGB颜色信息,可以考虑将这些信息融入到配准过程中。这种情况下,你可以使用颜色信息来增加点云之间的匹配可能性。

  4. 使用VFH进行快速筛选后的模板匹配: 在已知模板的情况下,可以使用VFH描述子来快速缩小搜索范围,找到最有可能的匹配目标。这种快速筛选可以大幅度减少后续计算量。一旦筛选到合适的候选模板,就可以使用ICP或其他精细配准方法来进行最后的对齐。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688658.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

王力宏胜诉,事实胜于雄辩,真相终将大白。

♥ 为方便您进行讨论和分享&#xff0c;同时也为能带给您不一样的参与感。请您在阅读本文之前&#xff0c;点击一下“关注”&#xff0c;非常感谢您的支持&#xff01; 文 |猴哥聊娱乐 编 辑|徐 婷 校 对|侯欢庭 好的&#xff0c;以下是对“2月5日&#xff0c;王力宏工作室在…

echarts制作两个柱状图

let colorList[#02ce8b,#ffbe62,#f17373]; let data1 [90,80,70,50] option { title:[{ // 第一个标题text: 环保检测, // 主标题textStyle: { // 主标题样式color: #333,fontWeight: bold,fontSize: 16},left: 20%, // 定位到适合的位置top: 10%, // 定位到适合的位置},{ //…

基于Springboot的新能源充电系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的新能源充电系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&a…

IO 作业 24/2/18

1> 使用fgets统计给定文件的行数 #include <stdio.h> #include <stdlib.h> #include <string.h> int main(int argc, const char *argv[]) {//定义文件指针FILE *fpNULL;//打开文件&#xff08;只读&#xff09;if((fpfopen("./test.txt",&quo…

300分钟吃透分布式缓存-01讲:业务数据访问性能太低怎么办?

这节课主要讲缓存的基本思想、缓存的优点、缓存的代价三个部分。 缓存的定义 先来看下缓存的定义。 & 缓存最初的含义&#xff0c;是指用于加速 CPU 数据交换的 RAM&#xff0c;即随机存取存储器&#xff0c;通常这种存储器使用更昂贵但快速的静态 RAM&#xff08;SRAM&…

Airtest-Selenium实操小课:爬取新榜数据

1. 前言 最近看到群里很多小伙伴都在用Airtest-Selenium做一些web自动化的尝试&#xff0c;正好趁此机会&#xff0c;我们也出几个关于web自动化的实操小课&#xff0c;仅供大家参考~ 今天跟大家分享的是一个非常简单的爬取网页信息的小练习&#xff0c;在百度找到新榜网页&a…

【精选】Java面向对象进阶——接口细节:成员特点和接口的各种关系

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …

鸿蒙生态来了 ,60k 高薪向你招手

最近&#xff0c;各大平台都被华为鸿蒙不断刷屏。原因是在华为秋季发布会上&#xff0c;华为宣布启动鸿蒙原生应用&#xff0c;不再兼容安卓应用。一石激起千层浪&#xff0c;这无疑是IT界的一颗核弹&#xff0c;各大企业和开发者都纷纷开始加入“鸿蒙朋友圈”。 鸿蒙原生应用…

【机构vip教程】Requests(1):Requests模块简介与安装

Requests模块简介 在python的标准库中&#xff0c;虽然提供了urllib,utllib2,httplib&#xff0c;但是做接口测试&#xff0c;requests使用更加方便快捷&#xff0c;正如官方说的&#xff0c;“让HTTP服务人类”。 Requests是用python语言基于urllib编写的&#xff0c;采用的是…

利用 pt-archiver 实现数据库归档功能

文章目录 一、前言关于Percona 二、Percona Toolkit安装 percona-toolkit&#xff1a;pt-archiver 归档命令的使用格式&#xff1a;示例&#xff1a; 三、归档步骤&#xff1a;1&#xff09;、创建归档数据库和归档表方式一(推荐)&#xff1a;这种方式的优缺点&#xff1a; 方式…

【Java】图解 JVM 垃圾回收(一):GC 判断策略、引用类型、垃圾回收算法

图解 JVM 垃圾回收&#xff08;一&#xff09; 1.前言1.1 什么是垃圾1.2 内存溢出和内存泄漏 2.垃圾回收的定义与重要性3.GC 判断策略3.1 引用计数算法3.2 可达性分析算法 4.引用类型5.垃圾回收算法5.1 标记-复制&#xff08;Copying&#xff09;5.2 标记-清除&#xff08;Mark…

Android 基础技术——HashMap

笔者希望做一个系列&#xff0c;整理 Android 基础技术&#xff0c;本章是关于HashMap HaspMap的默认初始长度是16&#xff0c;并且每次扩展长度或者手动初始化时&#xff0c;长度必须是2的次幂。 为什么长度是2的x次幂和每次扩容都是2倍?? 1&#xff09;当一个key被放进到数…

Python实现时间序列分析使用LOESS(STL)模型进行季节性趋势分解(STL算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 时间序列分析中&#xff0c;LOESS&#xff08;局部加权回归平滑&#xff09;和STL&#xff08;Seasona…

轨道交通信号增强与覆盖解决方案——经济高效,灵活应用于各类轨道交通场景!

方案背景 我国是世界上轨道交通里程最长的国家&#xff0c;轨道交通也为我们的日常出行带来极大的便利。伴随着无线通信技术的快速发展将我们带入电子时代&#xff0c;出行的过程中对无线通信的依赖程度越来越高&#xff0c;无论是车站还是车内都需要强大、高质量的解决方案以…

全网最详细的从0到1的turbo pnpm monorepo的前端工程化项目[搭建篇]

全网最详细的从0到1的turbo pnpm monorepo的前端工程化项目[搭建篇] 引言相关环境技术栈初始化工程安装turbo配置pnpm-workspace安装husky安装lint-staged安装eslint安装prettier配置 .editorconfig配置 .gitignore初步项目结构结语 引言 最近各种原因&#xff0c;生活上的&am…

SSTI模板注入漏洞(vulhub 复现)

首先了解模板引擎&#xff1a; 模板引擎&#xff08;这里特指用于Web开发的模板引擎&#xff09;是为了使用户界面与业务数据&#xff08;内容&#xff09;分离而产生的&#xff0c;它可以生成特定格式的文档&#xff0c;利用模板引擎来生成前端的html代码&#xff0c;模板引擎…

网络原理 - HTTP/HTTPS(1)

HTTP HTTP是什么 HTTP("全程超文本协议")是一种应用非常广泛的应用层协议. 文本:字符串(能在utf8/gbk)码表上找到合法字符. 超文本:不仅是字符串,还能携带图片啥的(HTML). 富文本:类似于word文档这种. HTTP诞生于1991年.目前已经发展为最主流使用的一种应用层协议.…

如何使用python 挑战将ai生成的概念图制作成2d游戏

要使用Python将AI生成的概念图制作成2D游戏&#xff0c;你可以遵循以下步骤&#xff1a; 生成概念图&#xff1a; 使用AI图像生成工具&#xff08;如DALL-E、DeepArt等&#xff09;来创建你的游戏概念图。保存生成的图像文件&#xff0c;通常为PNG或JPEG格式。 选择游戏引擎&a…

防火墙 iptables(二)-------------SNAT与DNAT

一、SNAT ①SNAT 应用环境: 局域网主机共享单个公网IP地址接入Internet (私有IP不能在Internet中正常路由) ②SNAT原理: 源地址转换&#xff0c;根据指定条件修改数据包的源IP地址&#xff0c;通常被叫做源映射 数据包从内网发送到公网时&#xff0c;SNAT会把数据包的源IP由…

【Java EE初阶十九】网络原理(四)

4. 数据链路层 数据链路层也有很多种协议&#xff0c;其中一个比较常见常用的,就是“以太网协议”&#xff08;通过网线/光纤, 来通信所使用的协议叫做以太网协议&#xff0c;以太网是横跨数据链路层 物理层&#xff09;&#xff1b; 4.1 以太网数据帧格式 帧头 载荷(IP 数据…