计算机设计大赛 深度学习乳腺癌分类

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688579.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql5.6忘记密码,如何找回(windows)

mysql5.6安装 第一步:关闭正在运行的数据库服务 net stop mysql第二步:在my.ini文件当中的[mysqld] 任意一个位置放入 skip-grant-tables第三步:启动mysql服务 net start mysql第四步:服务启动成功后就可以登录了,…

举个栗子!Tableau 技巧(265):灵活对比文本表的行数据

通过文本表查看数据时,我们经常需要将某一行数据与其他行进行对比,如何能更灵活更直观的对比分析各行数据情况呢? 可以试试这个方法!如下示例:点击某明细行时,该明细行会自动置顶,且其它行会新…

Linux系统:iptables 防火墙

目录 一、安全技术与防火墙 1、安全技术概念 2、防火墙 2.1 防火墙概念 2.2 防火墙分类 2.3 linux的防火墙Netfilter 2.4 防火墙工具介绍 2.5 netfilter 和 iptables 的关系 二、iptables 1、概念 2、五表五链 2.1 五个table表 2.2 五个chain链 2.3 内核中数据包…

ClickHouse--06--其他扩展MergeTree系列表引擎

其他扩展MergeTree系列 MergeTree 系列表引擎 --种类 MergeTree 系 列 表 引 擎 包 含 : MergeTreeReplacingMergeTreeSummingMergeTree(汇总求和功能)AggregatingMergeTree(聚合功能)CollapsingMergeTree&#xff08…

- 项目落地 - 《选择项目工具的方法论》

本文属于专栏《构建工业级QPS百万级服务》 提纲: 选择大概率能完成业务目标的工具选择最适合的工具制作最适合的工具 本文所说的项目工具,泛指业务软件开发,所依赖的第三方提供的成熟的资源。包括但不限于开发语言、编辑工具、编译工具、三方…

IgG1 (mouse), ELISA kit——ENZO热销产品

90分钟内可得结果的高特异性定量ELISA试剂盒 免疫球蛋白G(IgG)是一种免疫球蛋白单体,由两条(γ)重链和两条轻链组成。每个IgG分子包含两个抗原结合域和一个效应(Fc)域。Enzo Life Sciences可提供…

WebService接口测试

WebService的理解 WebService就是Web服务的意思,对应的应用层协议为SOAP(相当于HTTP协议),可理解为远程调用技术。 特点: 客户端发送的请求主体内容(请求报文)的格式为XML格式 接口返回的响…

学习数据结构和算法的第9天

题目讲解 移除元素 ​ 给你一个数组nums和一个值 val,你需要 原地 移除所有数值等于 val的元素,并返回移除后数组的新长度。 ​ 不要使用额外的数组空间,你必须仅使用0(1)额外空间并 原地 修改输入数组。 ​ 元素的顺序可以改变。你不需要…

电脑屏幕录制工具 Top10 榜单,免费无水印方法集

随着媒体行业的突飞猛进,不同服务之间对有效屏幕录制的竞争日益激烈。这导致市场上出现了质量参差不齐的屏幕录像机。特别是有些录屏器会自动给你录制的视频加上水印,给需要在公共场合使用的人留下不专业的印象。除此之外,它们甚至不能保护您…

OS文件管理

文件管理 文件的属性 文件所包含的属性: 文件名:由创建文件的用户决定文件名,主要为了方便用户找到文件,同一目录下不允许有重名文件。标识符:一个系统内的各文件标识符唯一,对用户来说毫无可读性&#…

vm centos7 docker 安装 mysql 5.7.28(2024-02-18)

centos系统版本 [rootlocalhost mysql5.7]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) docker版本 拉取指定版本镜像 docker pull mysql:5.7.28 docker images 创建挂载目录(数据存储在centos的磁盘上) mkdir -p /app/softwa…

全面的ASP.NET Core Blazor简介和快速入门

前言 因为咱们的MongoDB入门到实战教程Web端准备使用Blazor来作为前端展示UI,本篇文章主要是介绍Blazor是一个怎样的Web UI框架,其优势和特点在哪?并带你快速入门上手ASP.NET Core Blazor(当然这个前提是你要有一定的C#编程基础的情况&#x…

大数据01-导论

零、文章目录 大数据01-导论 1、数据与数据分析 **数据:是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。**数据可以是连续的值,比如声音、图像,称为模拟数据;也可…

探索【注解】、【反射】、【动态代理】,深入掌握高级 Java 开发技术

文章目录 Java注解1.注解基础2.注解原理 反射1.Class对象的获取1.基础公共类1.1.Object > getClass()1.2.类名.class 的方式1.3.Class.forName() 2.获取类的成员变量3.获取成员方法并调用4.反射优缺点 代理1.结构2.静态代理2.1.案例1-计算前后校验2.1.1.创建接口2.1.2.创建实…

Ubuntu20.04 安装jekyll

首先使根据官方文档安装:Jekyll on Ubuntu | Jekyll • Simple, blog-aware, static sites 如果没有报错,就不用再继续看下去了。 我这边在执行gem install jekyll bundler时报错,所以安装了rvm,安装rvm可以参考这篇文章Ubuntu …

javaweb——socket

定义 Socket(套接字)是计算机网络编程中的一种抽象,用于在网络上进行通信。它允许计算机之间通过网络进行数据传输。在Java中,Socket类提供了对TCP/IP协议的支持,通过它可以创建客户端和服务端程序,实现网…

FLUENT Meshing Watertight Geometry工作流入门 - 9 生成体网格

本视频中学到的内容: 讨论体网格的重要性,并了解生成体网格的不同方法 了解体网格质量,以及如何改进 视频链接: FLUENT Meshing入门教程-9生成体网格_哔哩哔哩_bilibili 体网格生成是使用大量离散体积或单元来离散化/表示计算模…

跨境云手机如何简化tiktok运营流程

如今,tiktok已经成为世界范围内都非常流行的社交媒体平台。然而在大多数情况下,由于网络原因,tiktok无法在国内使用,但依然有越来越多的人注册tiktok号码、建立tiktok矩阵。原因是tiktok仍然有大量的流量可供商业使用,…

java面试题基础篇

1.java面向对象三大特性 ​ 封装(Encapsulation):是面向对象方法的重要原则,就是把对象的属性和操作(或服务)结合为一个独立的整体,并尽可能隐藏对象的内部实现细节。 ​ 继承:就是…

php 函数(方法)、日期函数、static关键字

php 函数、日期函数 1. php函数2. 日期函数3. static 1. php函数 函数是一段可重复使用的代码块&#xff0c;可以将一系列操作封装起来&#xff0c;使代码更加模块化、可维护和可重用&#xff0c;来大大节省我们的开发时间和代码量&#xff0c;提高编程效率。 <?php// …