【RL】Monte Carlo Learning(蒙特卡洛学习)

Lecture 5: Monte Carlo Learning

The simplest MC-based RL algorithm: MC Basic

理解MC basic算法的关键是理解如何将policy iteration算法迁移到model-free的条件下。

Policy iteration算法在每次迭代过程中有两步:
{ Policy evaluation:  v π k = r π k + γ P π v π k Policy improvement:  π k + 1 = argmax π ( r π + γ P π v π k ) \begin{cases} \text{Policy evaluation: } \mathbf{v}_{\pi_k} = \mathbf{r}_{\pi_k} +\gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi_k} \\ \text{Policy improvement: } \mathbf{\pi}_{k+1} = \text{argmax}_{\pi} (\mathbf{r}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{v}_{\pi_k}) \end{cases} {Policy evaluation: vπk=rπk+γPπvπkPolicy improvement: πk+1=argmaxπ(rπ+γPπvπk)
Policy improvement阶段的元素表现形式为:
π k + 1 ( s ) = argmax π ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v π k ( s ′ ) ] = argmax π ∑ a π ( a ∣ s ) q π k ( s , a ) \begin{align*} \pi_{k+1}(s) &= \text{argmax}_{\pi} \sum_a \pi(a | s) \left[ \sum_r p(r | s, a) + \gamma \sum_{s'}p(s' | s, a) v_{\pi_k}(s') \right] \\ &= \text{argmax}_{\pi} \sum_a \pi(a | s)q_{\pi_k}(s, a) \end{align*} πk+1(s)=argmaxπaπ(as)[rp(rs,a)+γsp(ss,a)vπk(s)]=argmaxπaπ(as)qπk(s,a)
其中,关键是 q π k ( s , a ) q_{\pi_k}(s, a) qπk(s,a)

action value 的两种表达形式

Expression 1: model-based 方法
q π k ( s , a ) = ∑ r p ( r ∣ s , a ) + γ ∑ s ′ p ( s ′ ∣ s , a ) v π k ( s ′ ) q_{\pi_k}(s, a) = \sum_r p(r | s, a) + \gamma \sum_{s'}p(s' | s, a) v_{\pi_k}(s') qπk(s,a)=rp(rs,a)+γsp(ss,a)vπk(s)
Expression 2: model-free方法
q π k ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_{\pi_k}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] qπk(s,a)=E[GtSt=s,At=a]
因此,对于model-free的RL算法,可以直接利用数据(samples或experiences)使用expression 2的方法计算 q π k ( s , a ) q_{\pi_k}(s, a) qπk(s,a)

action values的Monte Carlo estimation步骤:

  • ( s , a ) (s, a) (s,a)开始,按照policy π k \pi_k πk,生成一个episode。

  • 计算episode的return g ( s , a ) g(s, a) g(s,a)

  • 对不同的 g ( s , a ) g(s, a) g(s,a)采用,计算 G t G_t Gt
    q π k ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_{\pi_k}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] qπk(s,a)=E[GtSt=s,At=a]

  • 假设已经获得一个episode集合,那么即拥有 { g ( j ) ( s , a ) } \{ g^{(j)}(s, a) \} {g(j)(s,a)},则
    q π k ( s , a ) = E [ G t ∣ S t = s , A t = a ] ≈ 1 N ∑ i = 1 N g ( j ) ( s , a ) q_{\pi_k}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] \approx \frac{1}{N} \sum_{i=1}^N g^{(j)}(s, a) qπk(s,a)=E[GtSt=s,At=a]N1i=1Ng(j)(s,a)

上述算法的基本理念是:当model不可获得时,可以使用data。

MC Basic algorithm:

对于给定的初始policy π 0 \pi_0 π0,在第 k k k次迭代中,有两个主要的步骤

step 1: policy evaluation。对所有的 ( s , a ) (s, a) (s,a)获取 q π k ( s , a ) q_{\pi_k}(s, a) qπk(s,a) 。具体来说,对每一个action-state对,运行得到无限数量(或足够多)的episode。它们的平均return即是 q π k ( s , a ) q_{\pi_k}(s, a) qπk(s,a)的估计。

step 2: policy improvement。对所有 s ∈ S s \in \mathcal{S} sS,计算 π k + 1 ( s ) = argmax π ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \text{argmax}_{\pi} \sum_a \pi(a | s)q_{\pi_k}(s, a) πk+1(s)=argmaxπaπ(as)qπk(s,a)。当 a k ∗ = argmax a q π k ( s , a ) a^*_k = \text{argmax}_a q_{\pi_k}(s,a) ak=argmaxaqπk(s,a)时,贪心optimal policy为 π k + 1 ( a k ∗ ∣ s ) = 1 \pi_{k+1}(a^*_k|s)=1 πk+1(aks)=1

注意,MC Basic算法与policy iteration算法是一致的,除了:

MC Basic算法直接估计 q π k ( s , a ) q_{\pi_k}(s, a) qπk(s,a)而不是计算 v π k ( s ) v_{\pi_k}(s) vπk(s)

在这里插入图片描述

  • MC Basic是policy iteration算法的一种变体。
  • model-free算法是在model-based算法的基础上建立的。 因此,在研究model-free算法之前,有必要先了解model-based算法
  • MC Basic对于揭示基于 MC 的model-free强化学习的核心思想很有用,但由于效率低而不实用。
  • 为什么 MC Basic 估计的是action value 而不是state value? 这是因为state value不能直接用来改进policy。 当模型不可用时,应该直接估计action value。
  • 由于policy iteration是收敛的,因此在给定足够的episode的情况下,MC Basic也保证是收敛的。

Example:

在这里插入图片描述

Task:上图展示的是初始policy,使用MC Basic算法寻找最优policy。

r boundary = − 1 r_{\text{boundary}} = -1 rboundary=1 r forbidden = − 1 r_{\text{forbidden}} = -1 rforbidden=1 r target = 1 r_\text{target}=1 rtarget=1 γ = 0.9 \gamma=0.9 γ=0.9

Outline:对于给定的policy π k \pi_k πk

step 1:policy evaluation。计算 q π k ( s , a ) q_{\pi_k}(s,a) qπk(s,a)。共有
9 states × 5 actions = 45 state-action pairs 9 \text{ states} × 5 \text{ actions} =45 \text{ state-action pairs} 9 states×5 actions=45 state-action pairs
step2: policy improvement。贪心的选择action
a ∗ ( s ) = argmax a i q π k ( s , a ) a^*(s) = \text{argmax}_{a_i}q_{\pi_k}(s, a) a(s)=argmaxaiqπk(s,a)
以计算 q π k ( s 1 , a ) q_{\pi_k}(s_1, a) qπk(s1,a)为例:

step 1: policy evaluation。

  • 由于当前的policy是确定性的,一个episode就足以得到action value。

  • 如果当前policy是随机的,则需要无限数量的episode(或至少许多)。

  • ( s 1 , a 1 ) (s_1, a_1) (s1,a1)开始,episode是 s 1 → a 1 s 1 → a 1 s 1 → a 1 ⋯ s_1 \xrightarrow[]{a_1} s_1 \xrightarrow[]{a_1} s_1\xrightarrow[]{a_1} \cdots s1a1 s1a1 s1a1 ,action value为:
    q π 0 ( s 1 , a 1 ) = − 1 + γ ( − 1 ) + γ 2 ( − 1 ) + ⋯ q_{\pi_0}(s_1, a_1) = -1 + \gamma (-1) + \gamma^2 (-1) + \cdots qπ0(s1,a1)=1+γ(1)+γ2(1)+

  • ( s 1 , a 2 ) (s_1, a_2) (s1,a2)开始,episode是 s 1 → a 2 s 2 → a 3 s 5 → a 3 ⋯ s_1 \xrightarrow[]{a_2} s_2 \xrightarrow[]{a_3} s_5\xrightarrow[]{a_3} \cdots s1a2 s2a3 s5a3 ,action value为:
    q π 0 ( s 1 , a 2 ) = 0 + γ 0 + γ 2 0 + γ 3 ( 1 ) + γ 4 ( 1 ) + ⋯ q_{\pi_0}(s_1, a_2) = 0 + \gamma 0 + \gamma^2 0 + \gamma^3(1) + \gamma^4(1) + \cdots qπ0(s1,a2)=0+γ0+γ20+γ3(1)+γ4(1)+

  • ( s 1 , a 3 ) (s_1, a_3) (s1,a3)开始,episode是 s 1 → a 3 s 4 → a 2 s 5 → a 3 ⋯ s_1 \xrightarrow[]{a_3} s_4 \xrightarrow[]{a_2} s_5\xrightarrow[]{a_3} \cdots s1a3 s4a2 s5a3 ,action value为:
    q π 0 ( s 1 , a 2 ) = 0 + γ 0 + γ 2 0 + γ 3 ( 1 ) + γ 4 ( 1 ) + ⋯ q_{\pi_0}(s_1, a_2) = 0 + \gamma 0 + \gamma^2 0 + \gamma^3(1) + \gamma^4(1) + \cdots qπ0(s1,a2)=0+γ0+γ20+γ3(1)+γ4(1)+

  • ( s 1 , a 4 ) (s_1, a_4) (s1,a4)开始,episode是 s 1 → a 4 s ‘ → a 1 s 1 → a 1 ⋯ s_1 \xrightarrow[]{a_4} s_` \xrightarrow[]{a_1} s_1\xrightarrow[]{a_1} \cdots s1a4 sa1 s1a1 ,action value为:
    q π 0 ( s 1 , a 4 ) = − 1 + γ ( − 1 ) + γ 2 ( − 1 ) + ⋯ q_{\pi_0}(s_1, a_4) = -1 + \gamma (-1) + \gamma^2 (-1) + \cdots qπ0(s1,a4)=1+γ(1)+γ2(1)+

  • ( s 1 , a 5 ) (s_1, a_5) (s1,a5)开始,episode是 s 1 → a 5 s 1 → a 1 s 1 → a 1 ⋯ s_1 \xrightarrow[]{a_5} s_1 \xrightarrow[]{a_1} s_1\xrightarrow[]{a_1} \cdots s1a5 s1a1 s1a1 ,action value为:
    q π 0 ( s 1 , a 5 ) = 0 + γ ( − 1 ) + γ 2 ( − 1 ) + ⋯ q_{\pi_0}(s_1, a_5) = 0 + \gamma (-1) + \gamma^2 (-1) + \cdots qπ0(s1,a5)=0+γ(1)+γ2(1)+

step 2: policy improvement。

  • 通过观察action value,可得:
    q π 0 ( s 1 , a 2 ) = q π 0 ( s 1 , a 3 ) q_{\pi_0}(s_1, a_2) = q_{\pi_0}(s_1, a_3) qπ0(s1,a2)=qπ0(s1,a3)
    是最大的。

  • 因此,policy可以被提高为:
    π 1 ( a 2 ∣ s 2 ) = 1 or π 1 ( a 3 ∣ s 1 ) = 1 \pi_1(a_2 | s_2) = 1 \;\;\; \text{or} \;\;\; \pi_1(a_3 | s_1) = 1 π1(a2s2)=1orπ1(a3s1)=1
    无论哪种方式, s 1 s_1 s1 的新policy都变得最优。

对于这个简单的例子来说,一次迭代就足够了!

检查episode长度的影响

使用 MC Basic 搜索不同episode长度的最优policy。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 当episode长度很短时,只有接近目标的state才具有非零的state value。
  • 随着episode长度的增加,离target较近的state比较远的state更早具有非零值。
  • episode长度应该足够长。
  • episode长度不必无限长。

Use date more efficiently: MC Exploring Starts

MC Basic 算法:

  • 优点:核心思想清晰可见。
  • 缺点:太简单而不实用。

考虑一个grid-world的例子,遵循policy π \pi π,可以得到一个episode,例如
s 1 → a 2 s 2 → a 4 s 1 → a 2 s 2 → a 3 s 5 → a 1 ⋯ s_1 \xrightarrow[]{a_2} s_2 \xrightarrow[]{a_4} s_1 \xrightarrow[]{a_2} s_2 \xrightarrow[]{a_3} s_5 \xrightarrow[]{a_1} \cdots s1a2 s2a4 s1a2 s2a3 s5a1
visit:每次state-action对出现在episode中,就称为该state-action对的访问

使用数据的方法:Initial-visit method

  • 只计算return并估计 q π ( s 1 , a 2 ) q_{\pi}(s_1, a_2) qπ(s1,a2)
  • MC Basic算法
  • 不能充分利用数据

episode也visit其他state-action对

在这里插入图片描述

其可以估计 q π ( s 1 , a 2 ) q_{\pi}(s_1, a_2) qπ(s1,a2) q π ( s 2 , a 4 ) q_{\pi}(s_2, a_4) qπ(s2,a4) q π ( s 2 , a 3 ) q_{\pi}(s_2, a_3) qπ(s2,a3) q π ( s 5 , a 1 ) q_{\pi}(s_5, a_1) qπ(s5,a1) ⋯ \cdots

Data-efficient方法:

  • first-visit方法
  • every-visit方法

基于 MC 的 RL 的另一个方面是何时更新policy。 有两种方法:

  • 第一种方法是,在policy evaluation步骤中,收集从state-action对开始的所有episode,然后使用平均return来近似action value。

    • 这是MC Basic算法采用的
    • 这种方法的问题是agent必须等到所有episodes都收集完毕。
  • 第二种方法使用单个episode的return来近似action value。

    这样就可以episode-by-episode完善policy。

第二种方法分析

  • 也许,单episode的return并不能准确地近似对应的action value。
  • 但是,在上一章介绍的truncated policy iteration算法中已经做到了这一点。

Generalized policy iteration:

  • 不是一个特定的算法
  • 它是指policy-evaluation和policy-improvement过程之间切换的总体思路或框架。
  • 许多model-based和model-free的强化学习算法都属于这个框架。

如果想要更有效地使用数据和更新估计,就可以得到一种称为 MC Exploring Starts 的新算法:

在这里插入图片描述

What is exploring starts?

  • Exploring starts意味着我们需要从每个state-action对开始生成足够多的episode。
  • MC Basic 和 MC Exploring Starts 都需要这个假设。

Why do we need to consider exploring starts?

  • 理论上,只有充分探索每个state的每个action value,才能正确选择最优动作。
    相反,如果没有探索某个action,则该action可能恰好是最佳action,因此会被错过。
  • 在实践中,exploring starts是很难实现的。 对于许多应用程序,尤其是那些涉及与环境的物理交互的应用程序,很难从每个state-action对开始收集episode。

因此理论与实践存在差距!

那么可以取消exploring starts的要求吗? 接下来将展示可以通过使用soft policy来做到这一点。

MC without exploring starts: MC ε \varepsilon ε-Greedy

如果采取任何action的概率为正,则policy被称为soft policy。

Why introduce soft policies?

  • 通过soft policy,一些足够长的episode可以访问每个state-action对足够多次。
  • 然后,不需要从每个state-action对开始都有大量的episode。 因此,可以消除exploring starts的要求。

ε \varepsilon ε-greedy policies
π ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) for the greedy action ε ∣ A ( s ) ∣ for other  ∣ A ( s ) ∣ − 1 actions \pi(a|s) = \begin{cases} 1 - \frac{\varepsilon }{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1) & \text{for the greedy action} \\ \frac{\varepsilon }{|\mathcal{A}(s)|} & \text{for other } |\mathcal{A}(s)| - 1 \text{ actions} \end{cases} π(as)={1A(s)ε(A(s)1)A(s)εfor the greedy actionfor other A(s)1 actions
其中, ε ∈ [ 0 , 1 ] \varepsilon \in [0, 1] ε[0,1]并且 A ( s ) \mathcal{A}(s) A(s) s s s的action的数量。

选择贪婪action的机会总是大于其他action。因为:
1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) = 1 − ε + ε ∣ A ( s ) ∣ ≥ ε ∣ A ( s ) ∣ 1 - \frac{\varepsilon }{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1) = 1 - \varepsilon + \frac{\varepsilon }{|\mathcal{A}(s)|} \ge \frac{\varepsilon }{|\mathcal{A}(s)|} 1A(s)ε(A(s)1)=1ε+A(s)εA(s)ε
Why use ε-greedy?

平衡利用(exploitation)与探索(exploration)。

  • ε = 0 \varepsilon = 0 ε=0时,变得贪婪。更少的探索(exploration),更多的利用(exploitation)。
  • ε = 1 \varepsilon = 1 ε=1时,变为均匀分布。更多探索(exploration),更少利用(exploitation)。

How to embed ε − \varepsilon - εgreedy into the MC-based RL algorithms?

原本,MC Basic 和 MC Exploring Starts 中的policy improvement步骤是为了解决:
π k + 1 ( s ) = argmax x ∈ Π ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \text{argmax}_{x \in \Pi} \sum_a \pi(a | s)q_{\pi_k}(s, a) πk+1(s)=argmaxxΠaπ(as)qπk(s,a)
其中, Π \Pi Π代表所有可能的policy。其中,最优的policy为:
π k + 1 ( a ∣ s ) = { 1 a = a k ∗ 0 a ≠ s k ∗ \pi_{k+1}(a | s) = \begin{cases} 1 & a = a^*_k\\ 0 & a \ne s^*_k \end{cases} πk+1(as)={10a=aka=sk
其中, a k ∗ = argmax a q π k ( s , a ) a^*_k = \text{argmax}_a q_{\pi_k}(s, a) ak=argmaxaqπk(s,a)

现在,policy improvement步骤改变为计算:
π k + 1 ( s ) = argmax x ∈ Π ε ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \text{argmax}_{x \in \Pi_\varepsilon } \sum_a \pi(a | s)q_{\pi_k}(s, a) πk+1(s)=argmaxxΠεaπ(as)qπk(s,a)
其中, Π ε \Pi_\varepsilon Πε 表示所有具有固定值 ε \varepsilon ε ε \varepsilon ε-greedy policy的集合。

最优的policy为:
π k + 1 ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) a = a k ∗ ε ∣ A ( s ) ∣ a ≠ a k ∗ \pi_{k+1}(a|s) = \begin{cases} 1 - \frac{\varepsilon }{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1) & a = a^*_k \\ \frac{\varepsilon }{|\mathcal{A}(s)|} & a \ne a^*_k \end{cases} πk+1(as)={1A(s)ε(A(s)1)A(s)εa=aka=ak

  • MC ε \varepsilon ε-Greedy 与 MC Exploring Starts 相同,只是前者使用 $\varepsilon $-greedy 策略。
  • 它不需要exploring starts,但仍然需要以不同的形式访问所有state-action对。

在这里插入图片描述

Can a single episode visit all state-action pairs?

ε \varepsilon ε=1时,policy(均匀分布)的探索能力最强。

在这里插入图片描述

ε \varepsilon ε较小时,策略的探索能力也较小。

在这里插入图片描述

Compared to greedy policies

  • 优点是 ε \varepsilon ε-greedy policy的具有更强的探索能力,因此不需要exploring starts条件。
  • 缺点是 ε \varepsilon ε-greedy policy一般来说不是最优的(我们只能证明总是存在最优的greedy policy)。
    • MC ε \varepsilon ε-greedy算法给出的最终policy仅在所有 ε \varepsilon ε-greedy policy的集合 Π ε \Pi_\varepsilon Πε中是最优的。
    • ε \varepsilon ε不能太大

Example

r boundary = − 1 r_{\text{boundary}} = -1 rboundary=1 r forbidden = − 10 r_{\text{forbidden}}=-10 rforbidden=10 r target = 1 r_{\text{target}} = 1 rtarget=1 γ = 0.9 \gamma=0.9 γ=0.9

在这里插入图片描述

在这里插入图片描述

ε \varepsilon ε增大时,policy的最优性能变得更差!最优 ε \varepsilon ε-greedy policy与greedy policy不一致。

Summary

  • Mean estimation by the Monte Carlo methods
  • Three algorithms:
    • MC Basic
    • MC Exploring Starts
    • MC ε \varepsilon ε-Greedy
  • Relationship among the three algorithms
  • Optimality vs exploration of ε \varepsilon ε-greedy policies




以上内容为B站西湖大学智能无人系统 强化学习的数学原理 公开课笔记。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/688359.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java之VO,BO,PO,DO,DTO

概念 VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。DTO(Data Transfer Object):数据传输对象,这…

VMware虚拟机安装CentOS7

对于系统开发来说,开发者时常会需要涉及到不同的操作系统,比如Windows系统、Mac系统、Linux系统、Chrome OS系统、UNIX操作系统等。由于在同一台计算机上安装多个系统会占据我们大量的存储空间,所以虚拟机概念应运而生。本篇将介绍如何下载安…

趋高技术开发出超低价的视觉尺寸测量仪软件

2024年1月1日元旦节当日,深圳市趋高技术有限公司Fuxi实验室开发组成员成功开发出一款视觉尺寸测量仪软件。这款软件类比市场价格处于超低价。仅报三千二百元。有需要的码农或客户都可以了解一下,带回家。 趋高技术HITREND是深圳的一家高科技公司。 …

Navicat:在 Navicat 中创建外键约束

文章目录 1 表设计2 外键设置3 删除、更新操作设置4 保存 在 Navicat 中,可以在“表设计器”的“外键”选项卡上找到外键约束。 1 表设计 若要创建新的外键约束,请以“表设计器”打开子表(在本例中为 fwaq_flow_jcjd)&#xff0…

Linux系统的历史记录添加时间和IP信息

1 为什么要优化系统历史记录 对于linux系统,默认情况下,系统记录的历史命令比较简单。某些历史记录可能也无法正常保存,因此当服务器出现异常,希望通过历史命令来了解曾经做了哪些操作时,往往非常被动,下面…

[计算机网络]深度学习传输层TCP协议

💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录专栏:深度学习传输层TCP协议 🎉欢迎大家点赞👍评论📝收藏⭐文章 [计算机网络]深度学习传输层TCP协议 前提概括一: TCP协议段格式二:确认应答三:超时重传四:…

vivado RAM HDL Coding Techniques

Vivado synthesis可以解释各种RAM编码风格,并将它们映射到分布式RAM中或块RAM。此操作执行以下操作: •无需手动实例化RAM基元 •节省时间 •保持HDL源代码的可移植性和可扩展性从编码示例下载编码示例文件。 在分布式RAM和专用RAM之间的选择块存储器…

基于SSM的电影购票系统(有报告)。Javaee项目。ssm项目。

演示视频: 基于SSM的电影购票系统(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…

十大经典排序算法之一--------------堆排序(java详解)

一.堆排序基本介绍: 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。堆是具有以下性质的完全二叉树:每个…

内存基础知识

内存作用:用来存放数据 int x10; xx1; 这会生成一个可执行文件(装入模块)然后存入内存地址中 绝对装入:-如果知道程序放到内存中哪个位置,编译程序将产生绝对地址的目标代码 可重定位装入&am…

idea 打不开项目 白屏

使用IDEA打开项目, 不知名原因崩溃了, 直接出现缩略图白屏。 解决过程: 尝试过重启IDEA,重启过电脑,重新引入相同项目(使用不同路径,存在缓存记录,依然打不开)&#xff…

数据结构——lesson3单链表介绍及实现

目录 1.什么是链表? 2.链表的分类 (1)无头单向非循环链表: (2)带头双向循环链表: 3.单链表的实现 (1)单链表的定义 (2)动态创建节点 &#…

删除链表的倒数第N个节点

删除链表的倒数第N个节点 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 进阶:你能尝试使用一趟扫描实现吗? 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5] 示例…

蓝桥杯Java组备赛(二)

题目1 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt();int max Integer.MIN_VALUE;int min Integer.MAX_VALUE;double sum 0;for(int i0;i<n;i) {int x sc.nextInt()…

文件上传漏洞--Upload-labs--Pass03--特殊后缀与::$DATA绕过

方法一&#xff1a;特殊后缀绕过&#xff1a; 一、什么是特殊后缀绕过 源代码中的黑名单禁止一系列后缀名 之外的后缀&#xff0c;称之为‘特殊后缀名’&#xff0c;利用其来绕过黑名单&#xff0c;达到上传含有恶意代码的文件的目的。 二、代码审计 接下来对代码逐条拆解进行…

VQ23 请按城市对客户进行排序,如果城市为空,则按国家排序(order by和case when的连用)

代码 select * from customers_info order by (case when city is null then country else city end)知识点 order by和case when的连用

VQ30 广告点击的高峰期(order by和limit的连用)

代码 select hour(click_time) as click_hour ,count(hour(click_time)) as click_cnt from user_ad_click_time group by click_hour order by click_cnt desc limit 1知识点 order by和limit的连用&#xff0c;取出所需结果 YEAR() 返回统计的年份 MONTH() 返回统计的月份 D…

解决Ubuntu下网络适配器桥接模式下ping网址不通的情况

问题反应&#xff1a;ping不通网址 打开虚拟机中的设置&#xff0c;更改网络适配器为NAT模式 确定保存更改之后&#xff0c;退出输入如下命令。 命令1&#xff1a; sudo /etc/network/inferfaces 命令2&#xff1a; sudo /etc/init.d/network/ restart

小程序列表下拉刷新和加载更多

配置 在小程序的app.json中&#xff0c;检查window项目中是否已经加入了"enablePullDownRefresh": true&#xff0c;这个用来开启下拉刷新 "window": {"backgroundTextStyle": "light","navigationBarBackgroundColor": &q…

unity C#中的封装、继承和多态简单易懂的经典实例

文章目录 封装 (Encapsulation)继承 (Inheritance)多态 (Polymorphism) C#中的封装、继承和多态是面向对象编程&#xff08;OOP&#xff09;的三大核心特性。下面分别对这三个概念进行深入解释&#xff0c;并通过实例来说明它们在实际开发中的应用。 封装 (Encapsulation) 实例…