数据分析(一) 理解数据

1. 描述性统计(summary)

对于一个新数据集,首先通过观察来熟悉它,可以打印数据相关信息来大致观察数据的常规特点,比如数据规模(行数列数)、数据类型、类别数量(变量数目、取值范围)、缺失值、异常值等等。然后通过描述性统计来了解数据的统计特性、属性间关联关系、属性与标签的关联关系等。

数据集一般是按照行列组织的,每行代表一个实例,每列代表一个属性。

import pandas as pd

import sys

import numpy as np

import pylab

import matplotlib.pyplot as plt

data = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)

# summary

nrow, ncol = data.shape

print(f"行数:{nrow}, 列数:{ncol}")

summary = data.describe()

print(summary)

# 箱线图

data_array = data.iloc[:, :3].values

pylab.boxplot(data_array)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges"))

pylab.show()

# 标准化后的箱线图

dataNormalized = data.iloc[:, :3]

for i in range(2):

    mean = summary.iloc[1, i]

    sd = summary.iloc[2, i]

    dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sd

    array3 = dataNormalized.values

pylab.boxplot(array3)

plt.xlabel("Attribute Index")

plt.ylabel(("Quartile Ranges - Normalized "))

pylab.show()

colArray = np.array(list(data.iloc[:, 0]))

colMean = np.mean(colArray)

colsd = np.std(colArray)

sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +

                 "Standard Deviation = " + '\t ' + str(colsd) + "\n")

# calculate quantile boundaries(四分位数边界)

ntiles = 4

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# run again with 10 equal intervals(十分位数边界)

ntiles = 10

percentBdry = []

for i in range(ntiles + 1):

    percentBdry.append(np.percentile(colArray, i * (100) / ntiles))

sys.stdout.write("Boundaries for 10 Equal Percentiles \n")

print(percentBdry)

sys.stdout.write(" \n")

# The last column contains categorical variables(标签变量)

colData = list(data.iloc[:, 1])

unique = set(colData)

sys.stdout.write("Unique Label Values \n")

print(unique)

# count up the number of elements having each value

catDict = dict(zip(list(unique), range(len(unique))))

catCount = [0] * 2

for elt in colData:

    catCount[catDict[elt]] += 1

sys.stdout.write("\nCounts for Each Value of Categorical Label \n")

print(list(unique))

print(catCount)

图中显示了一个小长方形,有一个红线穿过它。红线代表此列数据的中位数(第 50 百分位数),长方形的顶和底分别表示第 25 百分位数和第 75 百分位数(或者第一四分位数、第三四分位数)。在盒子的上方和下方有小的水平线,叫作盒须(whisker)。它们分别据盒子的上边和下边是四分位间距的 1.4 倍,四分位间距就是第 75 百分位数和第 25 百分位数之间的距离,也就是从盒子的顶边到盒子底边的距离。也就是说盒子上面的盒须到盒子顶边的距离是盒子高度的 1.4 倍。这个盒须的 1.4 倍距离是可以调整的(详见箱线图的相关文档)。在有些情况下,盒须要比 1.4 倍距离近,这说明数据的值并没有扩散到原定计算出来的盒须的位置。在这种情况下,盒须被放在最极端的点上。在另外一些情况下,数据扩散到远远超出计算出的盒须的位置(1.4 倍盒子高度的距离),这些点被认为是异常点。

2. 二阶统计信息(distribute,corr)

# 分位数图

import scipy.stats as stats

import pylab

stats.probplot(colArray, dist="norm", plot=pylab)

pylab.show()

如果此数据服从高斯分布,则画出来的点应该是接近一条直线。

# 属性间关系散点图

import matplotlib.pyplot as plt

data_row1 = data.iloc[0, :3]

data_row2 = data.iloc[1, :3]

plt.scatter(data_row1, data_row2)

plt.xlabel("1st Attribute")

plt.ylabel(("2nd Attribute"))

plt.show()

# 属性和标签相关性散点图

from random import uniform

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1)

    else:

        target.append(0)

plt.scatter(data_row1, target)

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

target = []

for i in range(len(colData)):

    if colData[i] == 'R':  # R用1代表, M用0代表

        target.append(1+uniform(-0.1, 0.1))

    else:

        target.append(0+uniform(-0.1, 0.1))

plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%

plt.xlabel("Attribute Value")

plt.ylabel("Target Value")

plt.show()

第二个图绘制时取 alpha=0.5,这样这些点就是半透明的。那么在散点图中若多个点落在一个位置就会形成一个更黑的区域。

# 关系矩阵及其热图

corMat = pd.DataFrame(data.corr())

plt.pcolor(corMat)

plt.show()

属性之间如果完全相关(相关系数 =1)意味着数据可能有错误,如同样的数据录入两次。多个属性间的相关性很高(相关系数 >0.7),即多重共线性(multicollinearity),往往会导致预测结果不稳定。属性与标签的相关性则不同,如果属性和标签相关,则通常意味着两者之间具有可预测的关系

# 平行坐标图

minRings = summary.iloc[3, 2]  # summary第3行为min

maxRings = summary.iloc[7, 2]  # summary第7行为max

for i in range(nrow):

    # plot rows of data as if they were series data

    dataRow = data.iloc[i, :3]

    labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

# 对数变换后平行坐标图

meanRings = summary.iloc[1, 2]

sdRings = summary.iloc[2, 2]

for i in range(nrow):

    dataRow = data.iloc[i, :3]

    normTarget = (data.iloc[i, 2] - meanRings) / sdRings

    labelColor = 1.0 / (1.0 + np.exp(-normTarget))

    dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)

plt.xlabel("Attribute Index")

plt.ylabel(("Attribute Values"))

plt.show()

在属性值相近的地方,折线的颜色也比较接近,则会集中在一起。这些相关性都暗示可以构建相当准确的预测模型。相反,有些微弱的蓝色折线与深橘色的区域混合在一起,说明有些实例可能很难正确预测。

转换后可以更充分地利用颜色标尺中的各种颜色。注意到针对某些个属性,有些深蓝的线(对应年龄大的品种)混入了浅蓝线的区域,甚至是黄色、亮红的区域。这意味着,当该属性值较大时,仅仅这些属性不足以准确地预测出鲍鱼的年龄。好在其他属性可以很好地把深蓝线区分出来。这些观察都有助于分析预测错误的原因。

3. 完整代码(code)

import pandas as pd
import sys
import numpy as np
import pylab
import matplotlib.pyplot as pltdata = pd.read_csv(r"C:\work\PycharmProjects\machine_learning\filename.csv", index_col=0)nrow, ncol = data.shape
print(f"行数:{nrow}, 列数:{ncol}")
summary = data.describe()
print(summary)data_array = data.iloc[:, :3].values
pylab.boxplot(data_array)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges"))
pylab.show()dataNormalized = data.iloc[:, :3]
for i in range(2):mean = summary.iloc[1, i]sd = summary.iloc[2, i]dataNormalized.iloc[:, i:(i + 1)] = (dataNormalized.iloc[:, i:(i + 1)] - mean) / sdarray3 = dataNormalized.values
pylab.boxplot(array3)
plt.xlabel("Attribute Index")
plt.ylabel(("Quartile Ranges - Normalized "))
pylab.show()colArray = np.array(list(data.iloc[:, 0]))
colMean = np.mean(colArray)
colsd = np.std(colArray)
sys.stdout.write("Mean = " + '\t' + str(colMean) + '\t\t' +"Standard Deviation = " + '\t ' + str(colsd) + "\n")# calculate quantile boundaries(四分位数边界)
ntiles = 4
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))sys.stdout.write("\nBoundaries for 4 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# run again with 10 equal intervals(十分位数边界)
ntiles = 10
percentBdry = []
for i in range(ntiles + 1):percentBdry.append(np.percentile(colArray, i * (100) / ntiles))
sys.stdout.write("Boundaries for 10 Equal Percentiles \n")
print(percentBdry)
sys.stdout.write(" \n")# The last column contains categorical variables(标签变量)
colData = list(data.iloc[:, 3])
unique = set(colData)
sys.stdout.write("Unique Label Values \n")
print(unique)# count up the number of elements having each value
catDict = dict(zip(list(unique), range(len(unique))))
catCount = [0] * 2
for elt in colData:catCount[catDict[elt]] += 1
sys.stdout.write("\nCounts for Each Value of Categorical Label \n")
print(list(unique))
print(catCount)# 分位数图
import scipy.stats as statsstats.probplot(colArray, dist="norm", plot=pylab)
pylab.show()# 属性间关系散点图
data_row1 = data.iloc[:, 0]
data_row2 = data.iloc[:, 1]
plt.scatter(data_row1, data_row2)
plt.xlabel("1st Attribute")
plt.ylabel(("2nd Attribute"))
plt.show()# 属性和标签相关性散点图
from random import uniformtarget = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1)else:target.append(0)
plt.scatter(data_row1, target)
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()target = []
for i in range(len(colData)):if colData[i] == 'R':  # R用1代表, M用0代表target.append(1 + uniform(-0.1, 0.1))else:target.append(0 + uniform(-0.1, 0.1))
plt.scatter(data_row1, target, alpha=0.5, s=120)  # 透明度50%
plt.xlabel("Attribute Value")
plt.ylabel("Target Value")
plt.show()# 关系矩阵及其热图
corMat = pd.DataFrame(data.corr())
plt.pcolor(corMat)
plt.show()# 平行坐标图
minRings = summary.iloc[3, 2]  # summary第3行为min
maxRings = summary.iloc[7, 2]  # summary第7行为max
for i in range(nrow):# plot rows of data as if they were series datadataRow = data.iloc[i, :3]labelColor = (data.iloc[i, 2] - minRings) / (maxRings - minRings)dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()meanRings = summary.iloc[1, 2]
sdRings = summary.iloc[2, 2]
for i in range(nrow):dataRow = data.iloc[i, :3]normTarget = (data.iloc[i, 2] - meanRings) / sdRingslabelColor = 1.0 / (1.0 + np.exp(-normTarget))dataRow.plot(color=plt.cm.RdYlBu(labelColor), alpha=0.5)
plt.xlabel("Attribute Index")
plt.ylabel(("Attribute Values"))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/687938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++--Linux基础使用

文章目录 几个简单命令开机关机重启查看当前目录切换当前目录列出当前目录下的目录和文件列出指定目录下的目录和文件清屏查看/设置时间 目录和文件目录概要目录详细说明相对路径和绝对路径 上古神器vi创建/打开文件vi 的两种模式vi 的常用命令 用户管理组管理用户管理修改用户…

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(初识)

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:世界上的另一个我 1:02━━━━━━️💟──────── 3:58 🔄 ◀️ ⏸ ▶️ ☰ &am…

上门回收小程序开发,互联网下发展机遇

在当下生活水平大幅度上升发展下,回收成为了人们日常生活中的一部分。 如今,随着互联网的快速发展,回收行业也进行了升级换代,由传统的线下回收门店到回收箱在到当下的线上互联网回收模式,迈向了“互联网废品回收”的…

Android下SF合成流程重学习之GPU合成

Android下SF合成流程重学习之GPU合成 引言 SurfaceFlinger中的图层选择GPU合成(CLIENT合成方式)时,会把待合成的图层Layers通过renderengine(SkiaGLRenderEngine)绘制到一块GraphicBuffer中,然后把这块GraphicBuffer图形缓存通过调用setClientTarget传递…

Portainer安装/快速上手

前置: 管理docker容器的工具 Portainer: Container Management Software for Kubernetes and Docker https://docs.portainer.io/v/ce-2.9/start/install/server/docker/linux 官网安装教程 Install Portainer CE with Docker on Linux - Portainer Documentat…

如何将阿里云服务器迁移

📑前言 本文主要是如何将阿里云服务器迁移实现数据转移的文章,如果有什么需要改进的地方还请大佬指出⛺️** 🎬作者简介:大家好,我是青衿🥇 ☁️博客首页:CSDN主页放风讲故事 🌄每日…

设计模式七大原则

七大原则有: 单一原则原则接口隔离原则依赖倒转原则里氏替换原则开闭原则迪米特法则合成复用原则 1 单一职责原则 1.1 基本介绍 ​ 对类来说的,即一个类应该只负责一项职责。 如类A负责两个不同的职责:职责1,职责2。当职责1需…

机器人路径平滑——贝塞尔曲线

文章目录 概要线性插值二次Bzier曲线三次Bzier曲线C++实现效果概要 贝塞尔曲线 (/bɛz.i.eɪ/ BEH-zee-ay) 是一种用于计算机图形学和相关领域的参数化曲线。一组离散的控制点通过公式定义平滑、连续的曲线。 本文首先叙述一阶/二阶/三阶贝塞尔曲线的基本理论,然后针对路径不…

SPSSAU【文本分析】|社会关系网络图

社会网络关系图 社会网络关系图展示关键词之间的关系情况,此处的关系是指‘共词矩阵’,即两个关键词同时出现的频数情况,将‘共词矩阵’信息使用可视化方式进行呈现出来,接下来将分别阐述‘共词矩阵’和‘社会网络关系图’。 共词…

uniapp返回上一级页面,传参,上一级通过参数重新请求数据

小程序navigateback传值_微信小程序 wx.navigateBack() 返回页面如何传递参数 - 文章...-CSDN博客 当前页面 上一级页面

模型训练 —— AI算法初识

一、背景 AI算法中模型训练的主要目的是为了让机器学习算法从给定的标注数据中学习规律、特征和模式,并通过调整模型内部参数,使模型能够对未见过的数据进行准确预测或决策。具体来说: 1. **拟合数据**:模型通过训练来识别输入数…

LCR 127. 跳跃训练【简单】

LCR 127. 跳跃训练 题目描述: 今天的有氧运动训练内容是在一个长条形的平台上跳跃。平台有 num 个小格子,每次可以选择跳 一个格子 或者 两个格子。请返回在训练过程中,学员们共有多少种不同的跳跃方式。 结果可能过大,因此结果…

羊大师:羊奶的不同口味带来了什么不同效果

羊大师:羊奶的不同口味带来了什么不同效果 羊奶的口味不同主要是因为其成分和加工方式的差异。尽管口味的变化可能会影响人们对羊奶的喜好程度,但总体而言,不同口味的羊奶在营养价值上并没有明显的差别。 然而,有些品牌的羊奶会添…

使用 apt 源安装 ROCm 6.0.x 在Ubuntu 22.04.01

从源码编译 rocSolver 本人只操作过单个rocm版本的情景,20240218 ubuntu 22.04.01 1,卸载原先的rocm https://docs.amd.com/en/docs-5.1.3/deploy/linux/os-native/uninstall.html # Uninstall single-version ROCm packages sudo apt autoremove ro…

跨境电商服务器怎么选?

随着全球化的加速和互联网的普及,跨境电商逐渐成为企业拓展业务的重要途径。而在跨境电商运营中,服务器的选择对于网站的稳定性和用户体验至关重要。本文将详细介绍如何选择适合跨境电商的服务器。 一、确定服务器需求 在选择跨境电商服务器之前&#…

【hcie-cloud】【28】华为云Stack安全管理服务

文章目录 前言信息安全管理需求安全管理的重要性典型安全事件分析等级保护管理要求等级保护中的安全管理建设安全管理中心云安全运营和管理面临的资源挑战云平台业务安全运营控制和审计问题安全运维内需云平台安全管理需求 安全管理服务详解安全运营中心SOC华为云Stack SOC服务…

shell脚本之高级变量

目录 一、高级变量赋值 1、高级变量赋值总结表 2、相关操作 二、变量间接引用 1、eval命令 一、高级变量赋值 1、高级变量赋值总结表 变量配置方式str 无配置str 为空字符串str 已配置为非空字符串var${str-expr}varexprvarvar$strvar${str:-expr}varexprvarexprvar$str…

【简洁的代码永远不会掩盖设计者的意图】如何写出规范整洁的代码

个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…

【EI会议征稿通知】第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)

第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024) 2024 5th International Conference on Information Science, Parallel and Distributed Systems 第五届信息科学与并行、分布式处理国际学术会议(ISPDS 2024)定于20…

百度智能云分布式数据库 GaiaDB-X 与龙芯平台完成兼容认证

近日,百度智能云的分布式关系型数据库软件 V3.0 与龙芯中科技术股份有限公司的龙芯 3C5000L/3C5000 处理器平台完成兼容性测试,功能与稳定性良好,获得了龙架构兼容互认证证书。 龙芯系列处理器 通用 CPU 处理器是信息产业的基础部件&#xf…