蓝桥杯备赛_python_BFS搜索算法_刷题学习笔记

1 bfs广度优先搜索

1.1 是什么

1.2怎么实现

2案例学习

2.1.走迷宫

 2.2.P1443 马的遍历

2.3. 九宫重排(看答案学的,实在写不来)

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

2.5. 长草

 3.总结


1 bfs广度优先搜索

【Python搜索算法】广度优先搜索(BFS)算法原理详解与应用,示例+代码_广度优先算法的路径搜索代码-CSDN博客

1.1 是什么

        看了其他大佬的分享之后,我理解的广度优先搜索是一种图遍历的算法,简单来说是他的访问规则是一层一层的访问,先访问距离节点近的数据,再逐层拓展访问远的数据。与广度优先搜索密切相关的数据类型叫做队列。队列我们可以理解为是日常生活中排队所形成的队形,先进先出是队列最大的特点。

1.2怎么实现

BFS算法的步骤如下:

  1. 初始化:选择一个起始节点,将其标记为已访问,并将其放入队列中(作为起始节点)。
  2. 进入循环:重复以下步骤,直到队列为空。 a. 从队列中取出一个节点。 b. 访问该节点。 c. 将所有未访问的相邻节点加入队列。 d. 标记已访问的节点,以避免重复访问。
  3. 结束循环:当队列为空时,表示已经遍历完整个图。

算法原理:

        BFS的工作原理是通过队列数据结构来管理待访问的节点。它从起始节点开始,然后逐一访问该节点的相邻节点,并将它们加入队列。然后,它从队列中取出下一个节点进行访问,以此类推。这确保了节点按照它们的距离从起始节点逐层遍历,因此BFS可以用于查找最短路径。

        BFS是一个宽度优先的搜索,它在查找最短路径等问题中非常有用。它不会陷入深度过深的路径,因为它会优先探索距离起始节点更近的节点。

总结:广度优先搜索一般来说都会有一个队列去存储节点,同时也会有一个数组去记录访问的状态。 

2案例学习

2.1.走迷宫

输入:

5 5 
1 0 1 1 0
1 1 0 1 1 
0 1 0 1 1
1 1 1 1 1
1 0 0 0 1
1 1 5 5 

输出:

8

         说明一下这道题的思路,这道题非常直观体现了BFS,并且是最基本的BFS。那代码的思路是怎么样的呢?我们来捋一下。

        一开始所说的队列其实就是列表,只是用到了队列的特点,也就是说队列其实就是类似于列表,只是这个算法的思路用到了队列的特点,一开始我想得太复杂了,总以为队列是一个很高级的容器,其实简单理解就是列表。

        那根据BFS的算法思路:

  1. 初始化:将迷宫的起点作为起始节点        queue=[(x1-1,y1-1,step)]
  2. 进入循环:循环终止的条件是什么,当列表为空就终止了       while queue:                    怎么取出列表的第一个元素,这个时候就是队列的特点,先进先出,怎么体现在列表中,进去就是存入,出来就是删除      x,y,step=queue.pop(0)                                          这里页需要注意走迷宫有上下左右四个方向对应的就是坐标的变化,这也是我对子节点的一个理解

         同时已经访问过的点也要做好标记

        我当时还有一个特别想不懂的,哈哈哈哈哈哈,想起来感觉自己特别蠢哈哈哈哈哈。

        怎么着,我想着每一个节点都有四个子节点,那意味着线路会不一样,怎么就知道那一个的step是最小的,结果我看到那个判断的出口就一下子大悟了,最短路径嘛,那早点满足出口条件的不就是最短路径嘛

n, m = map(int,input().split())
data = []
d = [[1,0],[-1,0],[0,1],[0,-1]]
for i in range(n):l = list(map(int,input().split()))data.append(l)
x1, y1, x2, y2 = map(int,input().split())
def bfs(x1,y1,step):queue=[(x1-1,y1-1,step)]while queue:x,y,step=queue.pop(0)if x==x2-1 and y==y2-1:return stepfor xx,yy in d:dx = x+xxdy = y+yyif 0<= dx <n and 0<= dy <m and data[dx][dy] :data[dx][dy]=0queue.append((dx,dy,step+1))return -1
print(bfs(x1,y1,0))
 2.2.P1443 马的遍历

做好久了但是还是没有完全通过,怎么办可以帮忙看看嘛 

n, m, x, y= map(int,input().split())
d = [[-1,2],[-2,1],[-2,-1],[-1,-2],[1,2],[2,1],[2,-1],[1,-2]]
data = []
result = [[0 for _ in range(m)]for _ in range(n)]
for i in range(1,n+1):for j in range(1,m+1):data.append([i,j])
from collections import deque
def bfs(x,y,a,b,step,visit):queue = deque([(x,y,step)])while len(queue) != 0:x1, y1, step = queue.popleft()if x1 == a and y1 == b:return stepfor xx,yy in d:dx = x1+xxdy = y1+yyif dx < 1 or dx > n or dy < 1 or dy > m:continueif visit[dx][dy] == 0:visit[dx][dy] = 1queue.append((dx, dy, step + 1))return -1for i,j in data:visit = [[0 for _ in range(m + 1)] for _ in range(n + 1)]visit[x][y] = 1ans = bfs(x,y,i,j,0,visit)result[i-1][j-1] = ans
for i in result:for j in i:print(j,end='\t')print('\n',end='')

2.3. 九宫重排(看答案学的,实在写不来)

6.九宫重排 - 蓝桥云课 (lanqiao.cn)

        我当时自己做的时候就在纠结到底是移动格子还是移动数字,很显然,如果要移动数字那每个数字都需要移动,但是移动格子的话我们只需要对这个格子进行操作就可以了。所以移动格子是最佳方案。

         以下是我自己写的错误代码,真的是错的离谱,纪念一下我稀里糊涂的脑子

start = input()
end = input()map1 = [[0 for _ in range(3)] for _ in range(3)]
map2 = [[0 for _ in range(3)] for _ in range(3)]
k1, k2 = 0, 0
for i in range(3):for j in range(3):map1[i][j] = start[k1]if start[k1] == '.':a, b = i, jk1 += 1
for i in range(3):for j in range(3):map2[i][j] = end[k2]k2 += 1d = [[1,0],[-1,0],[0,1],[0,-1]]def bfs(a,b,step):global map1visit = [[0 for _ in range(3)] for _ in range(3)]queue = [(a,b,step)]visit[a][b] = 1while queue:x, y, step = queue.pop(0)if map1 == map2:return stepfor xx,yy in d:dx = x+xxdy = y+yyif dx<0 or dx>2 or dy<0 or dy>2:continueif visit[dx][dy] == 0:visit[dx][dy] = 1map1[x][y],map1[dx][dy] = map1[dx][dy],map1[x][y]queue.append((dx,dy,step+1))return -1
print(bfs(a,b,0))

         别人大佬的代码代码写的真好

蓝桥杯:九宫格重排【BFS】【Python】_重排九宫问题bfs-CSDN博客

        当然我在别人的代码上加上了一些修改以及注释,主要是得自己看得懂

        我也反思了一下自己写的代码思路和别人的,我在一维和二维的变换上处理的十分混乱,导致自己都不知道到底是个什么事儿,因为我也知道是去移动格子,然后交换,但是我就很混乱。当然我的思路还有一些错误。

        别人的代码思路这一点我真是没想到,就是用字典的键值对去存储每一次移动格子后所形成的新字符串的步数,一旦相等了就可以直接返回。

start = input()
end = input()from collections import deque
def bfs():# 创建容器并初始化# 创建字典存储每次变换字符串的步数dic = {}dic[start] = 0# 创建队列queue = deque()queue.append(start)d = [[1, 0], [-1, 0], [0, 1], [0, -1]]# 进入循环while queue:now_start = list(queue.popleft())# 循环结束出口if "".join(now_start) == end:return dic["".join(now_start)]point = now_start.index('.')# 一维的下标转换为二维下标:# 转换公式:x = index//二维数组的宽度    y = index%二维数组的宽度x = point // 3y = point % 3step = dic["".join(now_start)]for xx,yy in d:dx = x+xxdy = y+yyif dx>=0 and dx<3 and dy>=0 and dy<3:new_start = now_start.copy()# 二维转一维# 转换公式:index = x*二维数组的宽度 + ynew_start[point],new_start[dx*3+dy] = new_start[dx*3+dy],new_start[point]if "".join(new_start) not in dic.keys():# dic.setdefault("".join(new_start),step+1)dic["".join(new_start)] = step+1queue.append("".join(new_start))return -1print(bfs())

 

 知识点笔记:

 2.4.青蛙跳杯子(学完九宫重排再做bingo)

1.青蛙跳杯子 - 蓝桥云课 (lanqiao.cn)

        那学完九宫重排之后写这道题就非常简单了,并且这道题还是一维的,不用转换,其他思路跟九宫重排一模一样。

        题目中所说的三种动作,虽然说是青蛙的跳动,但是把当作杯子的跳动去处理就会简单很多,总之学完九宫重排之后这道题就是很简单了。

start = input()
end = input()from collections import deque
def bfs():d = [1, -1, 2, -2, 3, -3]queue = deque()queue.append(start)dic = {}dic[start] = 0while queue:now_start = list(queue.popleft())point = now_start.index('*')step = dic["".join(now_start)]if "".join(now_start) == end:return dic["".join(now_start)]for xx in d:dx = point+xxnew_start = now_start.copy()if dx in range(0, len(start)):new_start[point], new_start[dx] = new_start[dx], new_start[point]if "".join(new_start) not in dic.keys():dic["".join(new_start)] = step+1queue.append("".join(new_start))return -1print(bfs())

2.5. 长草

0长草 - 蓝桥云课 (lanqiao.cn)

        这道题一开始的思路是想到了非连通图的遍历,然后我就是这么一个思路,先找到一个初始化的点先进行广度优先搜索,只进行K层的搜索,但是我一直都无法找到怎样去把握让搜索测层数是我想要的,不知道这个怎么解决,在这里遇到了大问题,然后再遍历我的地图看看还有没有另外的点需要搜索的。所以这个思路就需要两个数组,一个是队列,一个是记录我的访问状态,但是我并没有解决。

        然后就换了一个思路,将节点先依次入队,再对每一个节点进行广度优先搜索,这个就比较好控制,多少层那我就调用多少次的bfs。这里有一个点就在于我的while循环的出口是与队列的长度有关(或者是说节点的个数),因为队列只有把所有的节点都遍历完成之后才算。

        总之这道题也是一道与之前有着一点区别的,也可以算作是遍历非连通图的一种方法。

n, m = map(int,input().split())
maps = []
for i in range(n):l = list(input())maps.append(l)
k = int(input())from collections import deque
queue = deque()
for i in range(n):for j in range(m):if maps[i][j] == 'g':queue.append((i,j))d = [[1,0],[-1,0],[0,1],[0,-1]]
def bfs():ans = len(queue)while ans:x1, y1 = queue.popleft()for xx,yy in d:dx = x1+xxdy = y1+yy# if dx<0 or dx>=n or dy<0 or dy>=m:#     continuif 0<=dx<n and 0<=dy<m and maps[dx][dy] == '.':maps[dx][dy] = 'g'queue.append((dx,dy))ans -= 1for i in range(k):bfs()
for i in maps:print(''.join(i))

 

 3.总结

学习还在继续,持续学习加油!!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/687642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1.初识Tauri

文章目录 一、前言二、基本认识三、js与rust通信四、构建应用 一、前言 原文以及后续文章可点击查看&#xff1a;初识Tauri。 Tauri是一款比较新的跨平台桌面框架&#xff0c;也是我目前最喜欢的一个框架&#xff0c;其官网为&#xff1a;Tauri 它的作用其实和Electron很像&…

【PyQt】在PyQt5的界面上集成matplotlib绘制的图像

文章目录 0 前期教程1 概述2 matplotlib2.1 库导入2.2 图片的各个部分解释2.3 代码风格2.4 后端 3 集成matplotlib图像到pyqt界面中3.1 使用到的模块3.2 理解Qt Designer中的“控件提升”3.3 界面与逻辑分离的思路3.4 扩展 0 前期教程 【PyQt】PyQt5进阶——串口上位机及实时数…

transformer-Attention is All You Need(一)

1. 为什么需要transformer 循环模型通常沿输入和输出序列的符号位置进行因子计算。通过在计算期间将位置与步骤对齐&#xff0c;它们根据前一步的隐藏状态和输入产生位置的隐藏状态序列。这种固有的顺序特性阻止了训练样本内的并行化&#xff0c;这在较长的序列长度上变得至关重…

STM32-开发工具

开发过程中可能用到的工具 1、烧录下载调试工具ST-LINK ST-LINK&#xff0c;是ST(意法半导体)推出的调试编程工具&#xff0c;适用于STM32系列芯片的USB接口的下载及在线仿真器。 2、串口调试工具/串口下载工具 串口调试工具是一种用于通过串口通信协议与目标设备进行数据交…

源码网打包,目前有3000多个资源

源码网打包&#xff0c;目前有3000多个资源 需要赶快下手吧&#xff0c;到手可以使用&#xff0c;搭建好和本站一样&#xff0c;全网唯一 优化缩略图演示&#xff1a;https://www.htm.ink默认缩略图演示&#xff1a;https://blog.htm.ink网站截图

const--类的常量成员函数

在C中,为了禁止成员函数修改数据成员的值,可以将它设置为常量成员函数。设置常量成员函数的方法是在函数原型的后面加上const,形式如下: class x { …………… T f(t1,t2) const{} ………… }; 常量成员函数的作用&#xff1a; 将成员函数设置为const&#xff0c;表明该成员函…

FMEA的六大分类——SunFMEA软件

FMEA是一种预防性的质量工具&#xff0c;通过对产品设计或过程的故障模式进行分析&#xff0c;评估其可能产生的影响&#xff0c;从而采取相应的措施来降低产品的故障风险。根据分析的范围和目的&#xff0c;FMEA可以分为以下几种类型&#xff0c;今天sun fmea软件系统和大家一…

理解孟子思想,传承中华文化

为了更好地了解和传承中华文化&#xff0c;加深对孟子思想的认识与理解&#xff0c;探究孟子思想在现代社会的传承与发展&#xff0c;2024年2月18日&#xff0c;曲阜师范大学计算机学院“古韵新声&#xff0c;格物致‘知’”实践队队员崔本迪在山东省泰安市东平县进行了深入的调…

vue-路由(六)

阅读文章你可以收获什么&#xff1f; 1 明白什么是单页应用 2 知道vue中的路由是什么 3 知道如何使用vueRouter这个路由插件 4 知道如何如何封装路由组件 5 知道vue中的声明式导航router-link的用法 6 知道vue中的编程式导航的使用 7 知道声明式导航和编程式导航式如何传…

代码随想录算法训练营第33天| Leetcode1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果

文章目录 Leetcode 1005.K次取反后最大化的数组和Leetcode 134. 加油站Leetcode 135. 分发糖果 Leetcode 1005.K次取反后最大化的数组和 题目链接&#xff1a;Leetcode 1005.K次取反后最大化的数组和 题目描述&#xff1a; 给你一个整数数组 nums 和一个整数 k &#xff0c;按…

根据三维点坐标使用matplotlib绘制路径轨迹

需求&#xff1a;有一些点的三维坐标&#xff08;x&#xff0c;y&#xff0c;z&#xff09;&#xff0c;需要绘制阿基米德螺旋线轨迹图。 points.txt 0.500002, -0.199996, 0.299998 0.500545, -0.199855, 0.299338 0.501112, -0.199688, 0.298704 0.501701, -0.199497, 0.298…

在Linux系统中设置HTTP隧道以实现网络穿透和端口转发

在数字化世界中&#xff0c;网络穿透和端口转发成为了许多开发者和系统管理员必备的技能。而在Linux系统中&#xff0c;通过设置HTTP隧道&#xff0c;我们可以轻松实现这一目标&#xff0c;让我们的服务即便在内网环境中也能被外部世界所访问。 那么&#xff0c;如何在Linux系…

一文搞懂设计模式—观察者模式

本文已收录至Github&#xff0c;推荐阅读 &#x1f449; Java随想录 微信公众号&#xff1a;Java随想录 文章目录 使用场景实现方式Java对观察者模式的支持Guava对观察者模式的支持Spring对观察者模式的支持 优缺点 观察者模式&#xff08;Observer Pattern&#xff09;是一种…

小型洗衣机哪个牌子质量好?小型洗衣机十大排名

清洗内衣内裤这些贴身衣物确实是一件比较头疼的事&#xff0c;有的小伙子由于工作的劳累通常在洗完澡后并不喜欢直接清洗内衣内裤&#xff0c;会存上几天再扔到洗衣机里&#xff0c;这样做是很不可取的&#xff0c;因为穿过的内裤很久不洗就会滋生细菌&#xff0c;另外&#xf…

Java使用Documents4j实现Word转PDF(知识点+案例)

文章目录 前言源码获取一、认识Documents4j二、快速集成2.1、pom.xml依赖2.2、word转PDF实现项目目录WordUtils.javaDemo6.java测试效果 参考文章资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客之星、阿里…

Linux-系统资源管理的命令

目录 查看CPU&#xff1a;more /proc/meminfo 查看内存数据&#xff1a;free -m / free -h 查看系统版本&#xff1a;more /etc/issue 查看操作系统的类型&#xff1a;uname -a 查看主机名称&#xff1a;hostname 查看磁盘空间&#xff1a;df -h 查看某个目录空间…

【解决(几乎)任何机器学习问题】:处理分类变量篇(上篇)

这篇文章相当长&#xff0c;您可以添加至收藏夹&#xff0c;以便在后续有空时候悠闲地阅读。 本章因太长所以分为上下篇来上传&#xff0c;请敬请期待 很多⼈在处理分类变量时都会遇到很多困难&#xff0c;因此这值得⽤整整⼀章的篇幅来讨论。在本章中&#xff0c;我将 讲述不同…

快速搞懂时间序列数据平稳检验

在对时间序列数据进行分析预测时&#xff0c;平稳时间序列数据预测效果更好。所以首先要检测数据是否平稳&#xff0c;没有趋势的时间序列数据&#xff0c;我们称为平稳的&#xff0c;即随着时间的推移&#xff0c;表现出恒定的方差&#xff0c;具有恒定的自相关结构。本文介绍…

Linux 虚拟机在线热扩容分区

介绍 本教程是用于Linux虚拟机在调整虚拟硬盘大小后&#xff0c;进行在线不重启热扩容分区大小。 适用于RHEL 7以上的版本及衍生发行版。&#xff08;如Centos、Rocky Linux、Alma Linux等&#xff09; 硬盘分区在线热扩容 刷新硬盘容量 echo 1 > /sys/block/sda/device…

GIS利用不舒适指数绘制地区的生物气候舒适度图

生物气候舒适度定义了最适宜的气候条件,在这种条件下,人们感到健康和充满活力。生物气候舒适度地图对城市规划研究特别有用。温度、相对湿度和风速等要素对评估生物气候舒适度非常重要。[1] 人们已经得出了许多不同的指数来确定生物气候舒适度。在本博文中,我们将使用广泛使…