【Linux系统化学习】文件重定向

目录

文件内核对象

文件描述符的分配规则 

重定向

重定向的概念

dup2系统调用

输出重定向

追加重定向

输入重定向        

stderr解析

重定向到同一个文件中

分离常规输出和错输出


文件内核对象

上篇文章中我们介绍到了操作系统中的文件,操作系统为了方便管理进程打开的每个文件都会给每个文件创建一个内核对象(struct file)。但是每个进程可能打开多个进程,因此操作系统会形成一个数组,数组中的每个元素为文件内核对象指针指向当前进程打开的每个文件;数组的下标就代表一个打开的文件;对文件进行操作就是对数组的下标进行操作。打开的文件会加载在内存中,每个文件也都会有一段内存空间(文件缓冲区);打开文件会对文件进行操作,一般就是读操作和写操作;因此每个文件内核对象中一定含有这三种信息:

  • 打开文件的属性
  • 进行文件操作的方法集
  • 文件的内存空间(文件缓冲区)

总结:

  • 不能对磁盘中的内存进行操作,只能先将文件加载到内存中。
  • 对文件进行读数据和写数据都先要将文件加载到内存中(当文件不在内存中时会造成缺页中断,操作系统自动会将文件加载到内存中)。
  • 数据的读写本质是将内核缓冲区中的数据进行来回拷贝。

文件描述符的分配规则 

  1 #include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10 11     char buffer[1024];12     ssize_t s = read(0,buffer,1024);13     if(s>0)                                                              14     {15         buffer[s-1]=0;16         printf("echo# %s\n",buffer);17         write(1,buffer,strlen(buffer));18     }26     return 0;27 }

 

可以直接使用0和1文件描述符进行键盘和显示器的读写。 

    #include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>                                                       7 #define FILE_NAME "log.txt"8 int main()9 {10     int fd = open(FILE_NAME,O_CREAT|O_WRONLY|O_TRUNC,0666);11     if(fd<0)12     {13         perror("open");14         return 0;15     }                                                                    16     printf("fd:%d\n",fd);close(fd);17     return 0;18 }

 

上篇文章我们说过进程会默认打开三个流(stdin、stdout、stderr),分别为0,1,2。

文件描述符的分配规则:寻找最小的,没有被使用的数据的位置分配给指定的打开文件


重定向

重定向的概念

  • 改变原来系统命令的默认执行方式
  • Linux重定向是指修改原来默认的一些东西,对原来系统命令的默认执行方式进行改变,比如说简单的我不想看到在显示器的输出而是希望输出到某一文件中就可以通过Linux重定向来进行这项工作。

先执行一段代码,看现象:

    #include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10 11     close(1);12     int fd = open(FILE_NAME,O_CREAT|O_WRONLY|O_TRUNC,0666);13     if(fd<0)14     {15         perror("open");16         return 0;17     }18     printf("fd : %d \n",fd);19     printf("stdout->fd : %d \n",stdout->_fileno);fflush(stdout);close(fd)return 0;}

 

当我们不使用fflush刷新stdout时,显示器和新打开的文件都不会输出我们打印的内容,现象对应我们的第一张图片。使用fflush刷新stdout时,显示器不会输出我们的内容,但是新打开的文件中含有我们输出的内容。

现象的解释:进程运行是会打开我们的stdin、stdout、stderr,对应的文件描述符为0,1,2。当我我们关闭1,即关闭显示器。当新打开文件时根据文件描述符的分配规则文件描述符为1,但是printf、fprintf底层只认文件描述符1,但是此时的文件描述符已经不是stdout,而是新打开的文件,因此输出到新打开的文件中。

  1 #include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10 11     close(0);12     char buffer[1024];13     int fd = open(FILE_NAME,O_RDONLY);                                                                                                                   14     if(fd<0)15     {16         perror("open");17         return 0;18     }19     fread(buffer,1,sizeof(buffer),stdin);20     printf("%s\n",buffer);close(fd)return 0;}

 

根据上面的原理我们可以关闭0,即关闭从键盘输入;打开新文件,此时新文件的文件描述符为0,从新打开的文件中读取数据输入。 

dup2系统调用

通过上面的代码我们可以实现输入、输出重定向;但是需要我们手动关闭键盘或者显示器非常的麻烦,Linux中提供了系统调用,方便我们进行重定向。

  • 当调用dup函数时,内核在进程中创建一个新的文件描述符,此描述符是当前可用文件描述符的最小数值,这个文件描述符指向oldfd所拥有的文件表项。
  • dup2和dup的区别就是可以用newfd参数指定新描述符的数值,如果newfd已经打开,则先将其关闭。如果newfd等于oldfd,则dup2返回newfd, 而不关闭它。dup2函数返回的新文件描述符同样与参数oldfd共享同一文件表项。 

输出重定向

#include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10     int fd = open(FILE_NAME,O_CREAT|O_WRONLY|O_TRUNC,0666);11     if(fd<0)12     {13         perror("open");14         return 0;15     }16     dup2(fd,1);17     printf("fd : %d \n",fd);18     printf("stdout->fd : %d\n ",stdout->_fileno);19     printf("hello Linux\n");20     fprintf(stdout,"hello world\n");   close(fd);return 0;}             

  

使用系统调用进行重定向时,并不会像我们一样关闭键盘或者显示器而是创建新的文件描述符,然后让键盘或者显示器的文件描述符和键盘、显示器断开;和我们新打开的文件建立联系,此时这个文件就含有两个文件描述符,使用引用计数进行关闭文件。

追加重定向

#include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10     int fd = open(FILE_NAME,O_CREAT|O_WRONLY|O_APPEND,0666);11     if(fd<0)12     {13         perror("open");14         return 0;15     }16     dup2(fd,1);17     printf("fd : %d \n",fd);18     printf("stdout->fd : %d\n ",stdout->_fileno);19     printf("hello Linux\n");20     fprintf(stdout,"hello world\n");   close(fd);return 0;}    

输入重定向        

#include<stdio.h>2 #include<sys/types.h>3 #include<sys/stat.h>4 #include<fcntl.h>5 #include<unistd.h>6 #include<string.h>7 #define FILE_NAME "log.txt"8 int main()9 {10    // int fd = open(FILE_NAME,O_CREAT|O_WRONLY|O_APPEND,0666);11    int fd = open(FILE_NAME,O_RDONLY);                                    12     if(fd<0)13     {14         perror("open");15         return 0;16     }17     dup2(fd,0);18    // printf("fd : %d \n",fd);19    // printf("stdout->fd : %d\n ",stdout->_fileno);20    // printf("hello Linux\n");21    // fprintf(stdout,"hello world\n");22    char buffer[1024];23    fread(buffer , 1,1024,stdin);24    printf("%s",buffer);close(fd);return 0;}

stderr解析

上篇文章我们提到stdout和stderr,都代表显示器流即往显示器文件中打印。

#include<stdio.h>
int main()
{fprintf(stdout,"hello stdout\n");fprintf(stderr,"hello stderr\n");return 0;
}

 

但是我们进行重定向时只会将stdout进行重定向到文件中 ;stderr会在进程中保留。

因为fprintf底层只认文件描述符1,因此stderr不会被重定向。

重定向到同一个文件中

分离常规输出和错输出

进程运行时难免发生错误,输出错误信息;为了和常规信息进行区别,错误信息和常规信息分别独占一个显示器文件夹,我们只需要查看错误信息的显示器文件夹即可发现程序的报错信息。


今天对Linux下文件重定向的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686521.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Shellcode免杀对抗(C/C++)

Shellcode C/C免杀&#xff0c;绕过360安全卫士、火绒安全、Defender C/C基于cs/msf的上线 首先是测试一下shellcode上线&#xff0c;主要是俩种方法 测试环境 攻击机&#xff1a;kali2023 靶机&#xff1a;win10 msf方法 首先是启动msf msfconsole 然后msf生成一个sh…

CES 2024:NVIDIA 通过新的笔记本电脑、GPU 和工具提供生成式 AI

在 CES 2024 上&#xff0c;NVIDIA 推出了一系列硬件和软件&#xff0c;旨在释放 Windows 11 PC 上生成式 AI 的全部潜力。 在 PC 上本地运行生成式 AI 对于隐私、延迟和成本敏感型应用程序至关重要。在 CES 上&#xff0c;NVIDIA 将在整个技术堆栈中带来新的创新&#xff0c;…

C#开源免费的Windows右键菜单管理工具

前言 今天分享一个C#开源、免费、纯粹的Windows右键菜单管理工具&#xff1a;ContextMenuManager。 工具主要功能 程序支持国际化多语言显示。启用或禁用文件、文件夹、新建、发送到、打开方式、自定义文件格式、IE浏览器、WinX等右键菜单项目。对上述场景右键菜单项目进行修…

【NI-DAQmx入门】数据采集中的降噪技术

1.什么是噪声&#xff1f; 噪声是电路中存在的与期望信号不同的任何电信号 噪声可以降低&#xff0c;但不能消除 噪声可以在源头处被抑制 通过耦合可以降低数据传输通道的噪声 2.噪声耦合方法 导电性 电容性 感应性 其他 3.传导耦合噪声 来自不同电路的电流在一个公共阻抗中共…

⭐北邮复试刷题103. 二叉树的锯齿形层序遍历

103. 二叉树的锯齿形层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 示例 1&#xff1a;输入&#xff1a…

英文论文(sci)解读复现【NO.21】一种基于空间坐标的轻量级目标检测器无人机航空图像的自注意

此前出了目标检测算法改进专栏&#xff0c;但是对于应用于什么场景&#xff0c;需要什么改进方法对应与自己的应用场景有效果&#xff0c;并且多少改进点能发什么水平的文章&#xff0c;为解决大家的困惑&#xff0c;此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文&a…

AutoKeras(Python自动化机器学习)多模态数据和多任务

要点拓扑 AutoKeras 拓扑 要点 常规机器学习&#xff1a;scikit-learn示例探索性数据分析和数据预处理&#xff0c;线性回归&#xff0c;决策树图像分类ResNet模型示例&#xff0c;合成数据集DenseNet模型示例绘图线性回归和决策树模型使用Python工具seaborn、matplotlib、pan…

论文阅读:四足机器人对抗运动先验学习稳健和敏捷的行走

论文&#xff1a;Learning Robust and Agile Legged Locomotion Using Adversarial Motion Priors 进一步学习&#xff1a;AMP&#xff0c;baseline方法&#xff0c;TO 摘要&#xff1a; 介绍了一种新颖的系统&#xff0c;通过使用对抗性运动先验 (AMP) 使四足机器人在复杂地…

Github项目推荐-Tiny-Rdm

项目地址 GitHub - tiny-craft/tiny-rdm: A Modern Redis GUI Client 项目简述 一个开源的Redis管理工具&#xff0c;有漂亮的界面和丰富的功能。使用的编程语言如下 项目截图

【IIS中绑定SSL证书】

下载SSL证书&#xff1a; 打开服务器IIS&#xff1a; 点击导入 在IIS中新增网站&#xff1a;

【制作100个unity游戏之25】3D背包、库存、制作、快捷栏、存储系统、砍伐树木获取资源、随机战利品宝箱8(附带项目源码)

效果演示 文章目录 效果演示系列目录前言砍树功能源码完结 系列目录 前言 欢迎来到【制作100个Unity游戏】系列&#xff01;本系列将引导您一步步学习如何使用Unity开发各种类型的游戏。在这第25篇中&#xff0c;我们将探索如何用unity制作一个3D背包、库存、制作、快捷栏、存…

NodeJS背后的人:Express

NodeJS背后的人&#xff1a;Express 本篇文章&#xff0c;学习记录于&#xff1a;尚硅谷&#x1f3a2; 文章简单学习总结&#xff1a;如有错误 大佬 &#x1f449;点. 前置知识&#xff1a;需要掌握了解&#xff1a; JavaScript基础语法 、Node.JS环境API 、前端工程\模块化 …

【Linux】程序地址空间 -- 详解 Linux 2.6 内核进程调度队列 -- 了解

一、程序地址空间回顾 在学习 C/C 时&#xff0c;我们知道内存会被分为几个区域&#xff1a;栈区、堆区、全局/静态区、代码区、字符常量区等。但这仅仅是在语言层面上的理解&#xff0c;是远远不够的。 如下空间布局图&#xff0c;请问这是物理内存吗&#xff1f; 不是&…

Acwing 周赛143 解题报告 | 珂学家 | 状压DP

前言 整体评价 被这个T2难住了, 幸好最后磨出来了&#xff0c;感觉蛮头痛的。T3是道状压题&#xff0c;这个反而容易写。 A. 时间 思路: 模拟 取模&#xff0c;但是对0要改成12 n int(input())r n % 12print (12 if r 0 else r)B. 数对推理 思路: 按题意模拟 如果一组…

Kubernetes 元信息与控制器模型

一、资源元信息&#xff1a; Kubernetes 的资源对象组成&#xff1a;主要包括了 Spec、Status 和元数据。其中 Spec 部分用来描述期望的状态&#xff0c;Status 部分用来描述观测到的状态。 元数据主要包括了&#xff1a;Labels 用来识别资源的标签&#xff1b;Annotations 用…

EasyUI动态加载组件

要实现如下的效果&#xff0c;在表格中显示进度条 主要是需要再次初始化组件&#xff0c;借用ChatGPT的意思是&#xff1a; 在许多 JavaScript UI 框架中&#xff0c;包括 EasyUI&#xff0c;在动态地创建或插入新的 DOM 元素后&#xff0c;通常需要手动初始化相关的组件或特性…

DPU技术的进步:赋予未来创新力量

随着云计算和虚拟化技术的发展&#xff0c;网卡在功能和硬件结构方面也经历了四个阶段&#xff0c;即网卡、智能网卡、基于FPGA的DPU和DPU SoC网卡。本文将重点介绍这些不同类型的网络适配器和处理器&#xff0c;在硬件、可编程能力、开发和应用方面的特点。 网卡的演进和应用…

第四节笔记:XTuner 大模型单卡低成本微调实战

视频链接&#xff1a;https://www.bilibili.com/video/BV1yK4y1B75J/?spm_id_from333.788&vd_source3bbd0d74033e31cbca9ee35e111ed3d1 课程笔记&#xff1a; 1.Finetune简介 指令微调&#xff1a; 开始的大模型可能不知道问的是问题 这三种角色的划分只有在微调训练阶…

LeetCode、452. 用最少数量的箭引爆气球【中等,贪心,区间问题】

文章目录 前言LeetCode、452. 用最少数量的箭引爆气球【中等&#xff0c;贪心&#xff0c;区间问题】题目链接与分类思路贪心&#xff0c;连续区间数量问题 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客…

Unity 减低GC和优化

文章目录 在Unity中&#xff0c;垃圾收集&#xff08;Garbage Collection, GC&#xff09;是一项重要的内存管理机制&#xff0c;但过度的GC活动可能会导致性能瓶颈。优化Unity项目中的GC涉及减少不必要的对象分配和生命周期管理。以下列举了五个实例来详细说明如何降低GC负担并…