Linux进程间通信(三)-----System V消息队列

消息队列的概念及原理

        消息队列实际上就是在系统当中创建了一个队列,队列当中的每个成员都是一个数据块,这些数据块都由类型和信息两部分构成,两个互相通信的进程通过某种方式看到同一个消息队列,这两个进程向对方发数据时,都在消息队列的队尾添加数据块,这两个进程获取数据块时,都在消息队列的队头取数据块。

其中消息队列当中的某一个数据块是由谁发送给谁的,取决于数据块的类型。

总结一下:

  1. 消息队列提供了一个从一个进程向另一个进程发送数据块的方法。
  2. 每个数据块都被认为是有一个类型的,接收者进程接收的数据块可以有不同的类型值。
  3. 和共享内存一样,消息队列的资源也必须自行删除,否则不会自动清除,因为system V IPC资源的生命周期是随内核的。

消息队列数据结构

当然,系统当中也可能会存在大量的消息队列,系统一定也要为消息队列维护相关的内核数据结构。

消息队列的数据结构如下:

struct msqid_ds {struct ipc_perm msg_perm;struct msg *msg_first;      /* first message on queue,unused  */struct msg *msg_last;       /* last message in queue,unused */__kernel_time_t msg_stime;  /* last msgsnd time */__kernel_time_t msg_rtime;  /* last msgrcv time */__kernel_time_t msg_ctime;  /* last change time */unsigned long  msg_lcbytes; /* Reuse junk fields for 32 bit */unsigned long  msg_lqbytes; /* ditto */unsigned short msg_cbytes;  /* current number of bytes on queue */unsigned short msg_qnum;    /* number of messages in queue */unsigned short msg_qbytes;  /* max number of bytes on queue */__kernel_ipc_pid_t msg_lspid;   /* pid of last msgsnd */__kernel_ipc_pid_t msg_lrpid;   /* last receive pid */
};

可以看到消息队列数据结构的第一个成员是msg_perm,它和shm_perm是同一个类型的结构体变量,ipc_perm结构体的定义如下:

struct ipc_perm{__kernel_key_t  key;__kernel_uid_t  uid;__kernel_gid_t  gid;__kernel_uid_t  cuid;__kernel_gid_t  cgid;__kernel_mode_t mode;unsigned short  seq;
};

记录一下:共享内存的数据结构msqid_dsipc_perm结构体分别在/usr/include/linux/msg.h和/usr/include/linux/ipc.h中定义。

消息队列的创建

创建消息队列我们需要用msgget函数,msgget函数的函数原型如下:

int msgget(key_t key, int msgflg);

说明一下:

  1. 创建消息队列也需要使用ftok函数生成一个key值,这个key值作为msgget函数的第一个参数。
  2. msgget函数的第二个参数,与创建共享内存时使用的shmget函数的第三个参数相同。
  3. 消息队列创建成功时,msgget函数返回的一个有效的消息队列标识符(用户层标识符)。

消息队列的释放

释放消息队列我们需要用msgctl函数,msgctl函数的函数原型如下:

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

说明一下:
msgctl函数的参数与释放共享内存时使用的shmctl函数的三个参数相同,只不过msgctl函数的第三个参数传入的是消息队列的相关数据结构。

向消息队列发送数据

向消息队列发送数据我们需要用msgsnd函数,msgsnd函数的函数原型如下:

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

msgsnd函数的参数说明:

  • 第一个参数msqid,表示消息队列的用户级标识符。
  • 第二个参数msgp,表示待发送的数据块。
  • 第三个参数msgsz,表示所发送数据块的大小
  • 第四个参数msgflg,表示发送数据块的方式,一般默认为0即可。

msgsnd函数的返回值说明:

  • msgsnd调用成功,返回0。
  • msgsnd调用失败,返回-1。

其中msgsnd函数的第二个参数必须为以下结构:

struct msgbuf{long mtype;       /* message type, must be > 0 */char mtext[1];    /* message data */
};

注意: 该结构当中的第二个成员mtext即为待发送的信息,当我们定义该结构时,mtext的大小可以自己指定。

从消息队列获取数据

从消息队列获取数据我们需要用msgrcv函数,msgrcv函数的函数原型如下:

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

msgrcv函数的参数说明:

  • 第一个参数msqid,表示消息队列的用户级标识符。
  • 第二个参数msgp,表示获取到的数据块,是一个输出型参数。
  • 第三个参数msgsz,表示要获取数据块的大小
  • 第四个参数msgtyp,表示要接收数据块的类型。

msgrcv函数的返回值说明:

  • msgsnd调用成功,返回实际获取到mtext数组中的字节数。
  • msgsnd调用失败,返回-1。

System V信号量

信号量相关概念

  • 由于进程要求共享资源,而且有些资源需要互斥使用,因此各进程间竞争使用这些资源,进程的这种关系叫做进程互斥
  • 系统中某些资源一次只允许一个进程使用,称这样的资源为临界资源或互斥资源
  • 在进程中涉及到临界资源的程序段临界区
  • IPC资源必须删除,否则不会自动删除,因为system V IPC的生命周期随内核。

信号量数据结构

在系统当中也为信号量维护了相关的内核数据结构。

信号量的数据结构如下:

struct semid_ds {struct ipc_perm sem_perm;       /* permissions .. see ipc.h */__kernel_time_t sem_otime;      /* last semop time */__kernel_time_t sem_ctime;      /* last change time */struct sem  *sem_base;      /* ptr to first semaphore in array */struct sem_queue *sem_pending;      /* pending operations to be processed */struct sem_queue **sem_pending_last;    /* last pending operation */struct sem_undo *undo;          /* undo requests on this array */unsigned short  sem_nsems;      /* no. of semaphores in array */
};

信号量数据结构的第一个成员也是ipc_perm类型的结构体变量,ipc_perm结构体的定义如下:

struct ipc_perm{__kernel_key_t  key;__kernel_uid_t  uid;__kernel_gid_t  gid;__kernel_uid_t  cuid;__kernel_gid_t  cgid;__kernel_mode_t mode;unsigned short  seq;
};

进程互斥

        进程间通信通过共享资源来实现,这虽然解决了通信的问题,但是也引入了新的问题,那就是通信进程间共用的临界资源,若是不对临界资源进行保护,就可能产生各个进程从临界资源获取的数据不一致等问题。

        保护临界资源的本质是保护临界区,我们把进程代码中访问临界资源的代码称之为临界区,信号量就是用来保护临界区的,信号量分为二元信号量和多元信号量。

        比如当前有一块大小为100字节的资源,我们若是一25字节为一份,那么该资源可以被分为4份,那么此时这块资源可以由4个信号量进行标识。

信号量本质是一个计数器,在二元信号量中,信号量的个数为1(相当于将临界资源看成一整块),二元信号量本质解决了临界资源的互斥问题,以下面的伪代码进行解释:

        根据以上代码,当进程A申请访问共享内存资源时,如果此时sem为1(sem代表当前信号量个数),则进程A申请资源成功,此时需要将sem减减,然后进程A就可以对共享内存进行一系列操作,但是在进程A在访问共享内存时,若是进程B申请访问该共享内存资源,此时sem就为0了,那么这时进程B会被挂起,直到进程A访问共享内存结束后将sem加加,此时才会将进程B唤起,然后进程B再对该共享内存进行访问操作。

        在这种情况下,无论什么时候都只会有一个进程在对同一份共享内存进行访问操作,也就解决了临界资源的互斥问题。

        实际上,代码中计数器sem减减的操作就叫做P操作,而计数器加加的操作就叫做V操作,P操作就是申请信号量,而V操作就是释放信号量。

system V IPC联系

        通过对system V系列进程间通信的学习,可以发现共享内存、消息队列以及信号量,虽然它们内部的属性差别很大,但是维护它们的数据结构的第一个成员确实一样的,都是ipc_perm类型的成员变量。

这样设计的好处就是,在操作系统内可以定义一个struct ipc_perm类型的数组,此时每当我们申请一个IPC资源,就在该数组当中开辟一个这样的结构。

也就是说,在内核当中只需要将所有的IPC资源的ipc_perm成员组织成数组的样子,然后用切片的方式获取到该IPC资源的起始地址,然后就可以访问该IPC资源的每一个成员了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686408.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL DQL 基本查询

一.概念 数据查询不应只是简单返回数据库中存储的数据,还应该根据需要对数据进行筛选以及确定数据以什么样的格式显示。 二.语法格式 select 列名 from 表 where 条件 1.查询所有的商品 select * from product; 2.查询商品名和商品价格 select pname,price from…

最新PyCharm安装详细教程及pycharm配置

目录 一、PyCharm简介及其下载网站 二、单击网站的Downloads,进入二级页面,选择对应的操作系统下载PyCharm 三、PyCharm的安装程序的安装及其配置(configuration) 1、运行PyCharm Setup 2、安装位置设置 3、安装选项设置 4、开始菜单中PyCharm快捷方式的…

【C语言】实现队列

目录 (一)队列 (二)头文件 (三) 功能实现 (1)初始化 (2) 销毁队列 (3) 入队 (4)出队 (5&a…

centos7系列:出现ZooKeeper JMX enabled by default这种错误的解决方法

出现ZooKeeper JMX enabled by default这种错误的解决方法 前言一 问题描述二 解决方法2.1 可能的原因分析2.2 小编的问题解决方法First:检查/etc/profile里面zookeeper的环境变量配置Second:检查 zookeeper/conf/zoo.cfg里面的dataDir的路径 总结 前言 …

【Linux内核】从0开始入门Linux Kernel源码

🌈 博客个人主页:Chris在Coding 🎥 本文所属专栏:[Linux内核] ❤️ 前置学习专栏:[Linux学习]从0到1 ⏰ 我们仍在旅途 ​ 目录 …

Midjourney绘图欣赏系列(五)

Midjourney介绍 Midjourney 是生成式人工智能的一个很好的例子,它根据文本提示创建图像。它与 Dall-E 和 Stable Diffusion 一起成为最流行的 AI 艺术创作工具之一。与竞争对手不同,Midjourney 是自筹资金且闭源的,因此确切了解其幕后内容尚不…

MATLAB知识点:nchoosek函数(★★★☆☆)用来计算组合数,也能返回从向量v中抽取k个元素的所有组合

讲解视频:可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇(数学建模清风主讲,适合零基础同学观看)_哔哩哔哩_bilibili 节选自第3章:课后习题讲解中拓展的函数 在讲解第三…

模型 4E(交换、体验、随处、传教)理论

系列文章 分享 模型,了解更多👉 模型_总纲目录。重在提升认知。聚焦体验营销。 1 模型 4E(交换、体验、随处、传教)理论的应用 1.1 4E 理论在软件产品营销中的应用 某软件公司利用 4E 理论提升软件产品的市场占有率。具体如下: Exchange&a…

人工智能学习与实训笔记(四):神经网络之NLP基础—词向量

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客 本篇目录 四、自然语言处理 4.1 词向量 (Word Embedding) 4.1.1 词向量的生成过程 4.1.2 word2vec介绍 4.1.3 word2vec:skip-gram算法的实现 4.2 句向量 - 情感分析 4.2.1 LSTM (Long S…

C语言之日历问题

一、代码展示 #include<stdio.h> int leapyear(int year)//判断是不是闰年函数 {if (year % 4 0 && year % 100 ! 0 || year % 400 0)return 1;elsereturn 0; } int days(int year, int month, int* day)//判断一个月有几天 {if (month ! 2)return day[month…

7.JS里表达式,if条件判断,三元运算符,switch语句,断点调试

表达式和语句的区别 表达式就是可以被求值的代码比如什么a 1 语句就是一段可以执行的代码比如什么if else 直接给B站的黑马程序员的老师引流一波总结的真好 分支语句 就是基本上所有的语言都会有的if else 语句就是满足不同的条件执行不同的代码&#xff0c;让计算机有条件…

【Java程序员面试专栏 Java领域】Java虚拟机 核心面试指引

关于Java 虚拟机部分的核心知识进行一网打尽,主要包括Java虚拟机的内存分区,执行流程等,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 JVM 程序执行流程 包括Java程序的完整执行流程,以及Javac编译,JIT即时编译 Java程序的完整执…

会声会影2024新功能及剪辑视频步骤教程

会声会影2024的新功能主要包括&#xff1a; 全新的标题动态与特效&#xff1a;用户可以为文字标题指定进入、中场和退出的不同动态效果&#xff0c;比如闪现进入、中场弹跳和淡出退出等&#xff0c;让文字标题更具动感。此外&#xff0c;还新增了多个标题特效&#xff0c;包括…

037-安全开发-JavaEE应用JNDI注入RMI服务LDAP服务JDK绕过调用链类

037-安全开发-JavaEE应用&JNDI注入&RMI服务&LDAP服务&JDK绕过&调用链类 #知识点&#xff1a; 1、JavaEE-JNDI注入-RMI&LDAP 2、JavaEE-漏洞结合-FastJson链 3、JavaEE-漏洞条件-JDK版本绕过 演示案例&#xff1a; ➢JNDI注入-RMI&LDAP服务 ➢JNDI注…

阿里云香港服务器cn2速度测试和租用价格表

阿里云香港服务器中国香港数据中心网络线路类型BGP多线精品&#xff0c;中国电信CN2高速网络高质量、大规格BGP带宽&#xff0c;运营商精品公网直连中国内地&#xff0c;时延更低&#xff0c;优化海外回中国内地流量的公网线路&#xff0c;可以提高国际业务访问质量。阿里云服务…

YOLO v5项目实战 P5 解决运行detect文件时设置了--view-img但是显示不出来的问题

up主讲的实时显示目标检测后的图片的两种方法&#xff1a; &#xff08;1&#xff09;在下面的Terminal中输入下列命令&#xff1a; python detect.py --view-img &#xff08;2&#xff09;点击进入右上方的detect的Edit Configurations 然后在这个参数这里输入 --view img…

人工智能学习与实训笔记(八):百度飞桨套件使用方法介绍

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 本篇目录 八、百度飞桨套件使用 8.1 飞桨预训练模型套件PaddleHub 8.1.1 一些本机CPU可运行的飞桨预训练简单模型&#xff08;亲测可用&#xff09; 8.1.1.1 人脸检测模型 8.1.1.2 中文分词模型 8.1…

自然语言编程系列(四):GPT-4对编程开发的支持

在编程开发领域&#xff0c;GPT-4凭借其强大的自然语言理解和代码生成能力&#xff0c;能够深刻理解开发者的意图&#xff0c;并基于这些需求提供精准的编程指导和解决方案。对于开发者来说&#xff0c;GPT-4能够在代码片段生成、算法思路设计、模块构建和原型实现等方面给予开…

《数字电子电路》 课程设计:十字路口红绿灯自动控制系统(上)(multisim仿真及PCB实现)

&#xff08;一&#xff09;前言 本系列文章就笔者在大二下学期进行《数字电子线路》课程设计的题目&#xff1a;十字路口红绿灯自动控制系统 进行详细的讲解&#xff0c;希望对读者有所帮助。 &#xff08;二&#xff09;目录 一、主要指标及要求 二、电路工作原理 1、工作原…

P15---总电磁转矩T

正弦波驱动模式工作的永磁同步电动机的总电磁转矩 T clear clc% 15页表达式 syms Omega theta E I e_A E*sind(theta) e_B E*sind(theta-120) e_C E*sind(theta-240)i_A I*sind(theta) i_B I*sind(theta-120) i_C I*sind(theta-240)P e_A*i_A e_B*i_B e_C*i_CT P/Om…