算法沉淀——优先级队列(堆)(leetcode真题剖析)

在这里插入图片描述

算法沉淀——优先级队列

  • 01.最后一块石头的重量
  • 02.数据流中的第 K 大元素
  • 03.前K个高频单词
  • 04.数据流的中位数

优先队列(Priority Queue)是一种抽象数据类型,它类似于队列(Queue),但是每个元素都有一个关联的优先级。在优先队列中,元素按照优先级从高到低(或从低到高)排列,高优先级的元素先出队。这种数据结构可以用堆(Heap)来实现。

堆是一种二叉树结构,有两种主要类型:最大堆和最小堆。在最大堆中,每个节点的值都大于或等于其子节点的值;而在最小堆中,每个节点的值都小于或等于其子节点的值。对于优先队列来说,最大堆常常用于实现。

在堆中,根节点的元素具有最高(或最低)优先级,而且这一性质对于整个堆中的每个节点都成立。这确保了当我们从堆中移除元素时,总是移除具有最高(或最低)优先级的元素。

优先队列的常见操作包括:

  • 插入(Insertion):将元素插入队列中。
  • 删除最大(或最小)元素:移除并返回队列中具有最高(或最低)优先级的元素。

堆的实现可以通过数组或链表等数据结构。在使用数组实现堆时,父节点和子节点之间的关系可以通过数组的索引关系来表示。在C++中,可以使用 std::priority_queue 来实现优先队列,它默认使用最大堆,也可以通过传递自定义比较函数来实现最小堆。

01.最后一块石头的重量

题目链接:https://leetcode.cn/problems/last-stone-weight/

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出两块 最重的 石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块石头。返回此石头的重量。如果没有石头剩下,就返回 0

示例:

输入:[2,7,4,1,8,1]
输出:1
解释:
先选出 7 和 8,得到 1,所以数组转换为 [2,4,1,1,1],
再选出 2 和 4,得到 2,所以数组转换为 [2,1,1,1],
接着是 2 和 1,得到 1,所以数组转换为 [1,1,1],
最后选出 1 和 1,得到 0,最终数组转换为 [1],这就是最后剩下那块石头的重量。 

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000

思路

我们可以每次拿出最大的两个相比较,有差值就将差值保留,相等就都粉碎,这样我们很容易想到使用堆去计算,因为这符合堆的特性,我们可以使用各语言库中的堆容器来计算。

  1. 创建最大堆(Max Heap): 通过 priority_queue<int> 创建一个默认为最大堆的优先队列,将给定的石头数组中的元素加入最大堆中。
  2. 迭代处理: 使用一个循环迭代处理,直到堆中剩余的元素个数小于等于1。
  3. 从堆中取出两个最大的元素,执行碎石操作: 每次取出堆中的两个最大元素(即石头的重量最大的两块),执行碎石操作,计算碎石后的重量,将结果加回堆中。
  4. 返回结果: 当循环结束时,堆中剩余的元素即为最后一块石头的重量,或者堆为空,返回相应的结果。

代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(int x:stones) heap.push(x);while(heap.size()>1){int a=heap.top(); heap.pop();int b=heap.top(); heap.pop();if(a>b) heap.push(a-b);}return heap.size()?heap.top():0;}
};

02.数据流中的第 K 大元素

题目链接:https://leetcode.cn/problems/kth-largest-element-in-a-stream/

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

提示:

  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • 最多调用 add 方法 104
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

思路

这里是典型的topk问题,找的是第k个大的数,所以我们使用一个k大的小堆就能很好的解决这个问题。

在构造函数中,将初始的元素加入最小堆中,并维护堆的大小为 K,保证堆中只有前 K 大的元素。

当有新元素加入时,将新元素加入最小堆中,然后检查堆的大小是否超过 K,如果超过则弹出堆顶元素。最终返回当前堆顶元素,即为第 K 大的元素。这样,通过不断地将新元素加入最小堆,并保持堆的大小为 K,可以在 add 操作后始终保持堆中的元素为前 K 大的元素,而堆顶元素即为第 K 大的元素。

代码

class KthLargest {priority_queue<int,vector<int>,greater<int>> heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k=k;for(int& x:nums){heap.push(x);if(heap.size()>k) heap.pop();}}int add(int val) {heap.push(val);if(heap.size()>_k) heap.pop();return heap.top();}
};/*** Your KthLargest object will be instantiated and called as such:* KthLargest* obj = new KthLargest(k, nums);* int param_1 = obj->add(val);*/

03.前K个高频单词

题目链接:https://leetcode.cn/problems/top-k-frequent-words/

给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。

示例 1:

输入: words = ["i", "love", "leetcode", "i", "love", "coding"], k = 2
输出: ["i", "love"]
解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。注意,按字母顺序 "i" 在 "love" 之前。

示例 2:

输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
输出: ["the", "is", "sunny", "day"]
解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词,出现次数依次为 4, 3, 2 和 1 次。

注意:

  • 1 <= words.length <= 500
  • 1 <= words[i] <= 10
  • words[i] 由小写英文字母组成。
  • k 的取值范围是 [1, **不同** words[i] 的数量]

**进阶:**尝试以 O(n log k) 时间复杂度和 O(n) 空间复杂度解决。

思路

很显然这里这是还是topk问题,还是使用堆来解决问题,但是这里有两个比较条件,所以我们要注意比较函数的实现,主逻辑是找出前k个出现次数最多的,所以整体我们建小堆,还有一个附属条件,次数相同时,字典序小的排在前面,所以在相同次数时,我们相对于字符串建大堆,将字母小的排在前面。

  1. 哈希表统计频率: 使用 unordered_map 哈希表记录每个字符串出现的频率。
  2. 优先队列: 使用一个自定义的比较函数对象 cmp 作为优先队列的比较规则。按照频率从大到小排序,若频率相同则按照字符串字典序从小到大排序。遍历哈希表,将每个键值对(字符串及其频率)加入最小堆,并保持堆的大小为 K,当堆的大小超过 K 时,弹出堆顶元素。
  3. 结果处理: 从堆中依次取出前 K 高的字符串,存储到结果数组中。

最终,返回存储前 K 高字符串的结果数组 ret。这样通过哈希表统计频率,并使用优先队列来维护前 K 高的频率,实现了找出频率前 K 高的字符串。

代码

class Solution {struct cmp{bool operator()(const pair<string,int>& a,const pair<string,int>& b){if(a.second==b.second) return a.first<b.first;return a.second>b.second;}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string,int> hash;for(string& s:words) hash[s]++;priority_queue<pair<string,int>,vector<pair<string,int>>,cmp> heap;for(const pair<string,int>& x:hash){heap.push(x);if(heap.size()>k) heap.pop();}vector<string> ret(k);for(int i=k-1;i>=0;--i){ret[i]=heap.top().first;heap.pop();}return ret;}
};

04.数据流的中位数

题目链接:https://leetcode.cn/problems/find-median-from-data-stream/

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。
  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。
  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

提示:

  • -105 <= num <= 105
  • 在调用 findMedian 之前,数据结构中至少有一个元素
  • 最多 5 * 104 次调用 addNumfindMedian

思路

这里我们最容易想到的暴力解法就是每次插入时排序,但是这种方法时间复杂度太高,其实这里我们可以使用一个大堆和一个小堆来维护所有数,各分一半数据,若两边长度相等,则返回两个堆顶相加除2的值,若不等,返回大堆堆顶即可。

在构造函数中初始化两个优先队列,left 用于存放较小的一半元素(最大堆),right 用于存放较大的一半元素(最小堆)。 在 addNum 方法中,根据元素的大小选择将其插入到左堆或右堆。插入后需要保持两个堆的大小差不超过 1,以确保中位数的计算。 在 findMedian 方法中,根据两个堆的大小关系返回中位数。通过这种方式,不断将数据插入到两个堆中,并保持它们的大小差不超过 1,就能够在 O(1) 时间内查找到当前数据流的中位数。

代码

class MedianFinder {priority_queue<int> left;priority_queue<int,vector<int>,greater<int>> right;
public:MedianFinder() {}void addNum(int num) {if(left.size()==right.size()){if(left.empty()||num<=left.top()) left.push(num);else{right.push(num);left.push(right.top());right.pop();}}else{if(num<=left.top()){left.push(num);right.push(left.top());left.pop();}else right.push(num);}}double findMedian() {if(left.size()==right.size()) return (left.top()+right.top())/2.0;return left.top();}
};/*** Your MedianFinder object will be instantiated and called as such:* MedianFinder* obj = new MedianFinder();* obj->addNum(num);* double param_2 = obj->findMedian();*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/685017.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式Linux平台大文件生成以及处理方法

在日常工作中&#xff0c;为了验证某些场景下的功能&#xff0c;经常需要人为构造一些大文件进行测试&#xff0c;有时需要用大文件来测试下载速度&#xff0c;有时需要用大文件来覆盖磁盘空间&#xff1b;偶尔会看到一些网络博文会教大家如何构造大文件&#xff1b;但是当需要…

杨中科 ASP.NET DI综合案例

综合案例1 需求说明 1、目的:演示DI的能力; 2、有配置服务、日志服务&#xff0c;然后再开发一个邮件发送器服务。可以通过配置服务来从文件、环境变量、数据库等地方读取配置&#xff0c;可以通过日志服务来将程序运行过程中的日志信息写入文件、控制台、数据库等。 3、说明…

第三百四十九回

文章目录 1. 概念介绍2. 原理与方法2.1 知识对比2.2 使用方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"加密包crypto"相关的内容&#xff0c;本章回中将介绍characters包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 在项目中会遇到获取字…

Django实战:部署项目 【资产管理系统】,Django完整项目学习研究(项目全解析,部署教程,非常详细)

导言 关于Django&#xff0c;我已经和大家分享了一些知识&#xff0c;考虑到一些伙伴需要在实际的项目中去理解。所以我上传了一套Django的项目学习源码&#xff0c;已经和本文章进行了绑定。大家可以自行下载学习&#xff0c;考虑到一些伙伴是初学者&#xff0c;几年前&#…

OpenAI又出王炸,Sora是否要开启视频AI新时代?

OpenAI又出王炸&#xff0c;Sora是否要开启视频AI新时代&#xff1f; 关注微信公众号 DeepGoAI 前几天我们还在讨论 如何让ChatGPT3.5变得更聪明 今天OpenAI就带着新王炸出现了 如同ChatGPT一般 在计算机领域掀起轩然大波 开启真正视频AI新时代 那就是 Sora 很多同学可…

结构体对齐规则及为什么会有结构体对齐

前言&#xff1a; 大家在学习结构体中&#xff0c;在计算结构体大小时想必会很疑惑&#xff0c;为什么结构体的大小不是按照常理像数组一样一个字节一个字节的挨在一起放&#xff1f;今天带大家一起深入探讨一下背后的规则和原因。 结构体对齐规则&#xff1a; 结构体对齐其实…

离散数学截图2

为什么G中阶大于2的元素&#xff0c;一定有偶数个 在有限群G中&#xff0c;阶大于2的元素个数一定是偶数的原因如下&#xff1a; 设 aaa 是群G中一个阶大于2的元素&#xff0c;那么根据群的定义和阶的概念&#xff08;即某个元素的幂次使得其等于单位元的最小正整数&#xff…

【Linux】 Linux 小项目—— 进度条

进度条 基础知识1 \r && \n2 行缓冲区3 函数介绍 进度条实现版本 1代码实现运行效果 版本2 Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读&#xff01;&#xff01;&#xff01;下一篇文章见&#xff01;&#xff01;&#xff01; 基础知识 1 \r &&a…

linux 安装docker

目录 环境 操作步骤 1 下载脚本 2 执行脚本 3 检查docker版本&#xff0c;证明安装成功 环境 阿里云 ubuntu 22.04 64位 操作步骤 参考linux系统安装docker-腾讯云开发者社区-腾讯云 (tencent.com) 1 下载脚本 curl -fsSL https://get.docker.com -o get-docker.sh …

牛客小白月赛87

说明 年后第一次写题&#xff0c;已经麻了&#xff0c;这次的题很简单但居然只写了两道题。有种本该发挥80分的水平&#xff0c;但是只做出了20分的水平的感觉。不过剩下几个题&#xff08;除了G题&#xff09;&#xff0c;比完赛一小时内就AC了。欢迎大家交流学习。&#xff0…

OpenCV 笔记(22):图像的缩放——最近邻插值、双线性插值算法

1. 图像缩放 1.1 简介 图像缩放是指通过增加或减少像素来改变图像尺寸的过程&#xff0c;是图像处理中常见的操作。图像缩放会涉及效率和图像质量之间的权衡。 图像放大&#xff08;也称为上采样或插值&#xff09;的主要目的是放大原图像&#xff0c;以便在更高分辨率的显示设…

RK3568笔记十五:触摸屏测试

若该文为原创文章&#xff0c;转载请注明原文出处。 使用正点原子的ATK-RK3568板子&#xff0c;一直在测试屏幕和视频&#xff0c;突然想到触摸屏测试&#xff0c;一直没有用过&#xff0c;原子给的demo跑的是QT系统&#xff0c;触摸功能是正常的&#xff0c;测试一下&#xf…

学习天机02

1.注入bean的写法 构造函数的注入 2.回答和评论 在做这个功能的时候需要理解一些概念&#xff0c;张三提出问题就是提问者&#xff0c;李四去回答张三的问题&#xff0c;李四就是回答者&#xff0c;王五去回答李四的评论&#xff0c;王五就是评论者。 在提供的InteractionRep…

MySQL免安装版安装教程

官网下载安装包 MySQL :: Download MySQL Community Server (Archived Versions) 选择mysql版本下载 安装配置MySQL 将下载完的Mysql安装包解压到指定目录 打开windos系统的cmd&#xff0c;以管理员身份运行 进入mysql文件夹中的bin目录 安装MySQL的服务mysqld --install 初…

幻兽帕鲁游戏联机的时候,显示“网络连接超时”怎么解决?

如果你在游戏联机的时候&#xff0c;显示“网络连接超时”&#xff0c;可以检查下&#xff1a; 1、前提是你已经按照教程部署成功 2、检查防火墙有没有忘记设置&#xff0c;协议是UDP&#xff08;只有TCP不行&#xff0c;一定要有UDP&#xff09;&#xff0c;端口是否填了8211&…

AI:128-基于机器学习的建筑物能源消耗预测

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

02 c++入门

目录 c关键字命名空间c输入&输出缺省参数函数重载引用内联函数auto关键字(c11)基于范围的for循环(c11)指针空值—nullptr(c11) 0. 本节知识点安排目的 c是在c的基础上&#xff0c;容纳进去了面向对象编程思想&#xff0c;并增加了许多有用的库&#xff0c;以及编程范式等…

【论文精读】DINO

摘要 基于对ViT在监督学习领域的表现质疑&#xff0c;探究自监督方法下的ViT是否具有更好的特征提取能力&#xff0c;进而发现&#xff1a; 自监督ViT特征包含场景布局、对象边界。这些信息可以在最后一自注意力模块中直接访问。自监督ViT特征结合最近邻分类器(k-NN)分类头中表…

java-8组合式异步编程

11.1 Future 接口 Future接口在Java5中被引人&#xff0c;设计初衷是对将来某个时刻会发生的结果进行建模。它建模了一种异步计算&#xff0c;返回一个执行运算结果的引用&#xff0c;当运算结束后&#xff0c;这个引用被返回给调用方。在Future中触发那些潜在耗时的操作把调用…

【VSCode】使用笔记

目录 快捷键系列 相关插件 相关文档链接 快捷键系列 调出终端 ctrl 或者是ctrlJ 结束进程 ctrlc 注释 ctrlkc 取消注释 ctrlku 上下移动代码 alt方向键 多行光标ctrlalt方向键 快速跳过某个单词 ctrl方向键 相关插件 1.每次修改后&#xff0c;自动保存启动项目 相…