函数递归与迭代附n的阶乘+顺序打印一个整数的每一位数+求第n个斐波那契数

1. 什么是递归?

        递归其实是一种解决问题的方法,在C语言中,递归就是函数自己调用自己

下面是一个最简单的C语言递归代码:

#include <stdio.h>
int main()
{printf("hehe\n");main();//main函数中⼜调⽤了main函数return 0;
}

        上述就是⼀个简单的递归程序,只不过上面的递归只是为了演示递归的基本形式,不是为了解决问题,代码最终也会陷入死递归,导致栈溢出(Stack overflow)。

1.1递归的思想:

        把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
        递归中的递就是递推的意思,归就是回归意思,接下来慢慢来体会。

1.2 递归的限制条件

 从上面例子,我们也可以看出在书写递归的时候,有2个必要条件:

  • 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续,否则就会出现栈溢出的情况。
  • 每次递归调用之后越来越接近这个限制条件。

在下面的例子中,我们会进一步体会这2个限制条件。

 2.递归举例

2.1 举例1 :求n的阶乘

一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。
自然数n的阶乘写作n!。
题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。

2.1.1 分析和代码实现

我们知道n的阶乘的公式: n! = n *( n - 1)!

  1. 举例:
  2.         5! = 5*4*3*2*1
  3.         4! = 4*3*2*1
  4. 所以:5! = 5*4!

这样的思路就是把⼀个较大的问题,转换为一个与原问题相似,但规模较小的问题来求解的。
总结:当 n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。
n的阶乘的递归公式如下:


那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶乘,函数如下:

#include <stdio.h>
int Fact(int n)
{if(n==0)return 1;elsereturn n*Fact(n-1);
}
int main()
{int n = 0;scanf("%d", &n);int ret = Fact(n);printf("%d\n", ret);return 0;
}

运行结果(这里不考虑n太大的情况,n太大存在溢出):

迭代方式:

#include<stdio.h>
int Fact(int n)
{int i = 0;int ret = 1;for(i=1; i<=n; i++){ret *= i;}return ret;
}
int main()
{int n = 0;scanf("%d", &n);int ret = Fact(n);printf("%d\n", ret);return 0;
}

2.1.2 画图推演

 解释:

   首先传递参数5后,程序执行 n * Fact( n - 1)后调用自己并传参数4。一步一步递推到Fact(0),此时函数返回 1,即Fact(0)=1 。在这之后,程序开始回归,首先回归到Fact(1)= 1 * Fact(0),然后程序继续回归,直到Fact(5),所以最终计算出5的阶乘。

2.2 举例2 :顺序打印一个整数的每一位

输入⼀个整数m,打印这个按照顺序打印整数的每⼀位。
比如:
输入:1234      输出:1 2 3 4
输入:520        输出:5 2 0

2.2.1 分析和代码实现

这个题目,放在我们面前,首先想到的是,怎么得到这个数的每⼀位呢?
如果n是一位数,n的每一位就是n自己
n超过1位数的话,就得拆分每⼀位。1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4,然后继续对123%10,就得到了3,再除10去掉3,以此类推,不断的 %10 和 /10 操作,直到1234的每⼀位都得到;

但是这里有个问题就是得到的数字顺序是倒着的

但是我们有了灵感,我们发现其实一个数字的最低位是最容易得到的,通过%10就能得到
那我们假设想写一个函数Print来打印n的每⼀位,如下表示:

Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)又可以拆分为Print(123/10) + printf(123%10)

以此类推下去,就有

        Print(1234)
==>Print(123)                 +               printf(4)
==>Print(12)         +         printf(3)
==>Print(1)     +    printf(2)
==>printf(1)

直到被打印的数字变成一位数的时候,就不需要再拆分,递归结束。
那么代码完成也就比较清楚:

#include <stdio.h>
void Print(int n)
{if(n>9){Print(n/10);}printf("%d ", n%10);
}
int main()
{int m = 0;scanf("%d", &m);Print(m);return 0;
}

输入和输出结果:

在这个解题的过程中,我们就是使用了大事化小的思路
把Print(1234)打印1234每⼀位,拆解为首先Print(123)打印123的每⼀位,再打印得到的4
把Print(123)打印123每⼀位,拆解为首先Print(12)打印12的每⼀位,再打印得到的3
直到Print打印的是⼀位数,直接打印就行。

2.2.2画图推演

以1234每⼀位的打印来推演⼀下

 解释:

        整体来说先执行银色的,再执行黄色的线,即先递推再回归。当调用传的参数是一位数即1的时候打印1,随即回归依次打印2 3 4

 3.递归与迭代

递归是⼀种很好的编程技巧,但是很多技巧⼀样,也是可能被误用的,就像举例1一样,看到推导的公式,很容易就被写成递归的形式:

int Fact(int n)
{if(n==0)return 1;elsereturn n*Fact(n-1);
}

Fact函数是可以产生正确的结果,但是在递归函数调用的过程中涉及一些运行时的开销。
在C语言中每⼀次函数调用,都要需要为本次函数调用在栈区申请⼀块内存空间来保存函数调用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧
函数不返回,函数对应的栈帧空间就一直占用,所以如果函数调用中存在递归调用的话,每一次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采用函数递归的方式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。
所以如果不想使用递归就得想其他的办法,通常就是迭代的方式(通常也就是循环的方式)。
比如:计算n的阶乘,也是可以产生1~n的数字累计乘在⼀起的。

int Fact(int n)
{int i = 0;int ret = 1;for(i=1; i<=n; i++){ret *= i;}return ret;
}

上述代码是能够完成任务,并且效率比递归的方式更好。
事实上,我们看到的许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,但是这些问题的迭代实现往往比递归实现效率更高,如计算第n个斐波那契数。
当⼀个问题非常复杂,难以使用迭代的方式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

举例3:求第n个斐波那契数

我们先来了解一下斐波那契数:

        斐波那契数列:1,1,2,3,5,8,13,21,34,55,89…… ,

        以递归的方法定义:从第三项开始,每一项都等于前两项之和,显然这是一个线性递推数列。

就像计算第n个斐波那契数,是不适合使用递归求解的,但是斐波那契数问题的通过是使用递归的形式描述的,如下:

看到这公式,很容易诱导我们将代码写成递归的形式,如下所示:

int Fib(int n)
{if(n<=2)return 1;elsereturn Fib(n-1)+Fib(n-2);
}

测试代码:

#include <stdio.h>
int main()
{int n = 0;scanf("%d", &n);int ret = Fib(n);printf("%d\n", ret);return 0;
}

当我们n输入为50的时候,需要很长时间才能算出结果,这个计算所花费的时间,是我们很难接受的,这也说明递归的写法是非常低效的,那是为什么呢?

其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计算,而且递归层次越深,冗余计算就会越多。我们可以测试:

#include <stdio.h>
int count = 0;
int Fib(int n)
{if(n == 3)count++;//统计第3个斐波那契数被计算的次数if(n<=2)return 1;elsereturn Fib(n-1)+Fib(n-2);
}
int main()
{int n = 0;scanf("%d", &n);int ret = Fib(n); printf("%d\n", ret);printf("\ncount = %d\n", count);
return 0;}

运行结果:

这里我们看到了,在计算第40个斐波那契数的时候,使用递归方式,第3个斐波那契数就被重复计算了39088169次,这些计算是非常冗余的。所以斐波那契数的计算,使用递归是非常不明智的,我们就得想迭代的方式解决。
我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。
这样就有下面迭代的代码:

int Fib(int n)
{int a = 1;int b = 1;int c = 1;while(n>2){c = a+b;a = b;b = c;n--;}return c;
}

迭代的方式去实现这个代码,效率就要高出很多了。

期待

 

您的认同给予了我莫大的鼓励!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/684978.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java (spring-boot)的房屋租赁管理系统

一、项目介绍 基于Java (spring-boot)的房屋租赁管理系统功能&#xff1a;登录、管理员、租客、公告信息管理、房屋信息管理、用户信息管理、租金信息管理、故障信息管理、房屋出租信息详情、个人信息、修改密码、等等等。 适用人群&#xff1a;适合小白、大学生、毕业设计、课…

java远程连接Linux执行命令的三种方式

java远程连接Linux执行命令的三种方式 1. 使用JDK自带的RunTime类和Process类实现2. ganymed-ssh2 实现3. jsch实现4. 完整代码&#xff1a;执行shell命令下载和上传文件 1. 使用JDK自带的RunTime类和Process类实现 public static void main(String[] args){Process proc Run…

linux优化空间完全卸载mysql——centos7.9

文章目录 ⭐前言⭐linux命令使用&#x1f496; 基础命令&#x1f496; 内存优化&#x1f496; 完全删除mysql ⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享 linux优化空间&完全卸载mysql——centos7.9。 linux内存分配 在Linux中&#xff0c;内存分配是…

第7讲 SpringSecurity执行原理概述

SpringSecurity执行原理概述 spring security的简单原理&#xff1a; SpringSecurity有很多很多的拦截器&#xff0c;在执行流程里面主要有两个核心的拦截器 1&#xff0c;登陆验证拦截器AuthenticationProcessingFilter 2&#xff0c;资源管理拦截器AbstractSecurityInterc…

为什么电路要设计得这么复杂?

首先提出这个问题就很不容易啊&#xff0c;我们看两个精彩回答。 From 骄建&#xff1a; 假设我们回到第一个实用放大电路诞生之前&#xff1a; 某天你开始做一个CS单管放大器&#xff0c;电阻负载&#xff0c;可是有一大堆问题&#xff0c;电阻做的不准&#xff0c;温度对器…

AI:129-基于深度学习的极端天气事件预警

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

HTML5 Canvas与JavaScript携手绘制动态星空背景

目录 一、程序代码 二、代码原理 三、运行效果 一、程序代码 <!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title>星空背景</title> </head> <body style"overflow-x:hidden;"><canvas …

wayland(xdg_wm_base) client 使用 dmabuf 最简实例

文章目录 前言一、zwp_linux_dmabuf_v1 协议二、wayland client 使用 zwp_linux_dmabuf_v1 协议传递dma-buf代码实例1. wayland_dmabuf.c 代码实例2. xdg-shell-protocol.c 和 xdg-shell-client-protocol.h3. linux-dmabuf-unstable-v1-client-protocol.h 和 linux-dmabuf-unst…

算法学习(五)哈希表

哈希表 1. 概念 哈希函数也叫散列函数&#xff0c;它对不同的输出值得到一个固定长度的消息摘要。 1>散列结果应当具有同一性&#xff08;输出值尽量均匀&#xff09; 2>雪崩效应&#xff08;微小的输入值变化使得输出值发生巨大的变化&#xff09; 通常有以下几种构…

机器学习算法与Python实战 | 常见统计概率分布实现(内含python代码)

本文来源公众号“机器学习算法与Python实战”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;https://mp.weixin.qq.com/s/0Lgmdvey70wXQcP1XQvylQ 在平时的科研中&#xff0c;我们经常使用统计概率的相关知识来帮助我们进行城市研…

第五节 zookeeper集群与分布式锁_2

1.分布式锁概述 1.1 什么是分布式锁 1&#xff09;要介绍分布式锁&#xff0c;首先要提到与分布式锁相对应的是线程锁。 线程锁&#xff1a;主要用来给方法、代码块加锁。当某个方法或代码使用锁&#xff0c;在同一时刻仅有一个线程执行该方法或该代码段。 线程锁只在同一J…

二分、快排、堆排与双指针

二分 int Binary_Search(vector<int> A,int key){int nA.size();int low0,highn-1,mid;while(low<high){mid(lowhigh)/2;if(A[mid]key)return mid;else if(A[mid]>key)highmid-1;elselowmid1; }return -1; }折半插入排序 ——找到第一个 ≥ \ge ≥tem的元素 voi…

代码随想录Day52 | 打家劫舍

代码随想录Day52 | 打家劫舍 198.打家劫舍213.打家劫舍II337.打家劫舍III 198.打家劫舍 文档讲解&#xff1a;代码随想录 视频讲解&#xff1a; 动态规划&#xff0c;偷不偷这个房间呢&#xff1f;| LeetCode&#xff1a;198.打家劫舍 状态 选与不选 dp数组 dp[j] 表示第j个位…

【医学知识图谱 自动补全 关系抽取】生成模型 + 医学知识图谱 = 发现三元组隐藏的关系实体对

生成模型 医学知识图谱 发现三元组新关系实体对 提出背景问题&#xff1a;如何自动发现并生成医疗领域中未被标注的实体关系三元组&#xff1f;CRVAE模型 提出背景 论文&#xff1a;https://dl.acm.org/doi/pdf/10.1145/3219819.3220010 以条件关系变分自编码器&#xff08;…

第7章 Page449 7.8.9智能指针 std::unique_ptr课堂作业,使用智能指针改写foo()函数

源代码&#xff1a; /** \brief 使用std::unique_ptr改写智能指针章节开始的foo()函数** \param* \param* \return**/ #include <iostream> #include <memory>using namespace std;struct O {~O(){cout << "我是被管的对象。我要被释放啦......" …

php基础学习之文件包含

描述 在一个php脚本中&#xff0c;将另一个php文件包含进来&#xff0c;合作实现某种功能 这个描述看起来似乎和C/Java等语言的头文件/包有点类似&#xff0c;但本质是不一样的 打个比方&#xff1a; C/Java的头文件/包更像是一个工具箱&#xff0c;存放各种很完善的工具&#…

Git快速掌握,通俗易懂

Git分布式版本控制工具 介绍 Git是一个开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。Git是由Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。Git可以帮助开发者们管理代码的版本&#xff0c;避免代码冲突&#…

C# 异步方法的使用场景

我一直认为C#的异步方法只是一堆华而不实的东西&#xff0c;坑特别多&#xff0c;比起直接自建线程也没有任何优势。 直到有一天&#xff0c;一个需求场景&#xff0c;让我再次想到了C#的异步方法。 需求场景如下&#xff1a;需要写一个程序控制机械臂完成各种动作。每个动作要…

机器学习分类评估四个术语TP,FP,FN,TN

分类评估方法主要功能是用来评估分类算法的好坏&#xff0c;而评估一个分类器算法的好坏又包括许多项指标。了解各种评估方法&#xff0c;在实际应用中选择正确的评估方法是十分重要的。 这里首先介绍几个常见的模型评价术语&#xff0c;现在假设我们的分类目标只有两类&#x…

Dockerfile 常用指令

1、FROM 指定base镜像。 2、Docker history 显示镜像的构建历史&#xff0c;也就是Dockerfile的执行过程。 Missing 表示无法获取IMAGE ID&#xff0c;通常从Docker Hub下载的镜像会有这个问题。 3、调试Dockerfile&#xff0c;使用sudo docker run -it XXXX&#xff0c;XXXX…