算法沉淀——哈希算法(leetcode真题剖析)

在这里插入图片描述

算法沉淀——哈希算法

  • 01.两数之和
  • 02.判定是否互为字符重排
  • 03.存在重复元素
  • 04.存在重复元素 II
  • 05.字母异位词分组

哈希算法(Hash Algorithm)是一种将任意长度的输入(也称为消息)映射为固定长度的输出的算法。这个输出通常称为哈希值或摘要。哈希算法的主要目的是快速、高效地检索数据,因为哈希值可以用作数据的唯一标识。

哈希算法的特点包括:

  1. 固定输出长度: 无论输入的数据大小如何,哈希算法都会生成固定长度的哈希值。
  2. 快速计算: 对于给定的输入,哈希算法应该迅速生成相应的哈希值。
  3. 不可逆性: 从哈希值不能逆向推导出原始输入的内容。即使输入的数据发生微小变化,生成的哈希值也应该是大不相同的。
  4. 雪崩效应: 输入数据的微小变化应该导致输出哈希值的巨大变化,以确保输入数据的任何改变都能产生不同的哈希值。

在算法题中,哈希算法有许多实际运用。以下是一些常见的应用场景:

  1. 查找和检索: 使用哈希表(HashMap)来快速查找元素。通过将元素的键映射到哈希表中的索引,可以在常量时间内执行查找操作。
  2. 去重: 利用哈希集合(HashSet)来检测和删除重复元素。通过将元素的哈希值映射到集合中,可以轻松检测是否已经存在相同的元素。
  3. 缓存: 使用哈希表来实现缓存,以快速检索先前计算的结果。这种方法被称为缓存哈希。
  4. 字符串匹配: 使用哈希算法来加速字符串匹配过程。例如,Rabin-Karp字符串匹配算法使用哈希值来比较字符串,以快速检测是否匹配。
  5. 数据校验: 哈希算法用于验证数据的完整性。通过生成数据的哈希值并将其与已知的哈希值进行比较,可以确保数据在传输或存储过程中没有被篡改。
  6. 分布式系统: 在分布式系统中,哈希算法被用于负载均衡和数据分片。通过将资源或数据的标识哈希到一组节点上,可以实现均匀分布和高效的访问。
  7. 密码学: 在密码学中,哈希算法用于生成密码的摘要,以便安全地存储密码或验证用户身份。
  8. 图算法: 在图算法中,哈希算法可用于快速判断两个图是否相同或是否存在同构关系。

01.两数之和

题目链接:https://leetcode.cn/problems/two-sum/

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

  • 2 <= nums.length <= 104
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109
  • 只会存在一个有效答案

**进阶:**你可以想出一个时间复杂度小于 O(n2) 的算法吗?

思路

如果我们在事先将「数组内的元素」和「下标」绑定在一起存入「哈希表」中,然后直接在哈希表中查找每一个元素的 target - nums[i],就能快速地找到「目标和的下标」。这里有一个小技巧,我们可以不用将元素全部放入到哈希表之后再来二次遍历(因为要处理元素相同的情况)。而是在将元素放入到哈希表中的「同时」,直接来检查表中是否已经存在当前元素所对应的目标元素(即 target - nums[i])。如果它存在,那么我们已经找到了对应解,并立即将其返回。无需将元素全部放入哈希表中,提高效率。由于哈希表中查找元素的时间复杂度是 O(1),遍历一遍数组的时间复杂度为 O(N),因此可以将时间复杂度降到 O(N)。这是一个典型的「用空间换时间」的方式。

代码

class Solution {
public:vector<int> twoSum(vector<int>& nums, int target) {// 哈希表,用于存储元素值及其对应的索引unordered_map<int, int> hash;int n = nums.size();for(int i = 0; i < n; ++i) {int x = target - nums[i]; // 计算目标值与当前元素的差值if(hash.count(x)) {// 如果差值在哈希表中存在,说明找到了两个数的和等于目标值return {hash[x], i};}hash[nums[i]] = i; // 将当前元素值及其索引存入哈希表}// 如果未找到符合条件的两个数,返回 {-1, -1}return {-1, -1};}
};

02.判定是否互为字符重排

题目链接:https://leetcode.cn/problems/check-permutation-lcci/

给定两个由小写字母组成的字符串 s1s2,请编写一个程序,确定其中一个字符串的字符重新排列后,能否变成另一个字符串。

示例 1:

输入: s1 = "abc", s2 = "bca"
输出: true 

示例 2:

输入: s1 = "abc", s2 = "bad"
输出: false

说明:

  • 0 <= len(s1) <= 100
  • 0 <= len(s2) <= 100

思路

这里使用哈希的思想,首先我们可以将两个字符串分别建立哈希,然后再进行对比,但这样时间和空间复杂度都很高,所以我们第一次优化使用一个哈希遍历完第一个字符串,再将第二个字符串进行遍历,每次减计数前先判断是否计数已经为0,如果已经为0,说明不匹配,直接返回false,这里要提一点,因为这里是26个小写字母,所以我们可以直接使用数组来进一步优化,其次,字符串如果长度不相等我们可以在最开始就判断为false

代码

class Solution {
public:bool CheckPermutation(string s1, string s2) {// 如果两个字符串长度不相等,直接返回 falseif(s1.size() != s2.size()) return false;int hash[26] = {0}; // 用于统计每个字符在 s1 中的出现次数// 统计 s1 中每个字符的出现次数for(char& c : s1) {hash[c - 'a']++;}// 遍历 s2 中的字符for(char& c : s2) {// 如果字符 c 在 s1 中不存在或出现次数已经用尽,返回 falseif(hash[c - 'a'] == 0) {return false;}hash[c - 'a']--; // 减少字符 c 在 s1 中的出现次数}// 如果遍历完 s2 后每个字符在 s1 中的出现次数都匹配,返回 truereturn true;}
};

03.存在重复元素

题目链接:https://leetcode.cn/problems/contains-duplicate/

给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false

示例 1:

输入:nums = [1,2,3,1]
输出:true

示例 2:

输入:nums = [1,2,3,4]
输出:false

示例 3:

输入:nums = [1,1,1,3,3,4,3,2,4,2]
输出:true

提示:

  • 1 <= nums.length <= 105
  • -109 <= nums[i] <= 109

思路

这里我们使用哈希中的set容器就可以很好的解决这个问题,我们将数组中的数一个一个插入set,再插入之前先统计该数是否已经存在,存在就返回true,全部插入完毕,说明不存在重复元素。

代码

class Solution {
public:bool containsDuplicate(vector<int>& nums) {unordered_set<int> hash; // 用于存储已经遍历过的元素// 遍历数组中的每个元素for(int& i : nums) {// 如果当前元素已经在 hash 中存在,说明数组包含重复元素,返回 trueif(hash.count(i)) {return true;}// 将当前元素插入到 hash 中hash.insert(i);}// 如果遍历完数组都没有发现重复元素,返回 falsereturn false;}
};

04.存在重复元素 II

题目链接:https://leetcode.cn/problems/contains-duplicate-ii/

给你一个整数数组 nums 和一个整数 k ,判断数组中是否存在两个 不同的索引 ij ,满足 nums[i] == nums[j]abs(i - j) <= k 。如果存在,返回 true ;否则,返回 false

示例 1:

输入:nums = [1,2,3,1], k = 3
输出:true

示例 2:

输入:nums = [1,0,1,1], k = 1
输出:true

示例 3:

输入:nums = [1,2,3,1,2,3], k = 2
输出:false

提示:

  • 1 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • 0 <= k <= 105

思路

这道题相比于上一道题我们只需修改一下条件即可,在遇到相同元素时相减判断,若不符合,我们将之前的下标覆盖,若将整个数组插入完毕,则不存在。

代码

class Solution {
public:bool containsNearbyDuplicate(vector<int>& nums, int k) {unordered_map<int, int> hash; // 用于存储元素及其最近一次出现的索引int n = nums.size();// 遍历数组中的每个元素for (int i = 0; i < n; ++i) {// 如果当前元素已经在 hash 中存在if (hash.count(nums[i])) {// 检查当前元素的索引与最近一次出现的索引之差是否不超过 kif (i - hash[nums[i]] <= k) {return true;}}// 更新当前元素的最近一次出现的索引hash[nums[i]] = i;}// 遍历完数组都没有发现符合条件的重复元素,返回 falsereturn false;}
};

05.字母异位词分组

题目链接:https://leetcode.cn/problems/group-anagrams/

给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。

字母异位词 是由重新排列源单词的所有字母得到的一个新单词。

示例 1:

输入: strs = ["eat", "tea", "tan", "ate", "nat", "bat"]
输出: [["bat"],["nat","tan"],["ate","eat","tea"]]

示例 2:

输入: strs = [""]
输出: [[""]]

示例 3:

输入: strs = ["a"]
输出: [["a"]] 

提示:

  • 1 <= strs.length <= 104
  • 0 <= strs[i].length <= 100
  • strs[i] 仅包含小写字母

思路

这里使用哈希的写法可以极大的减轻我们的代码量以及简单易懂,首先我们呢将每个字符串临时排序,将哈希的key值设为排序后的字符串,这样异位词就可以在相同的key值后不断插入,最后我们将hash中的value全部导出即可。

代码

class Solution {
public:vector<vector<string>> groupAnagrams(vector<string>& strs) {unordered_map<string, vector<string>> hash; // 用于存储排序后的字符串和对应的字母异位词组for (string& s : strs) {string tmp = s;sort(tmp.begin(), tmp.end()); // 将字符串排序,使得字母异位词变得相同hash[tmp].emplace_back(s); // 将排序后的字符串作为 key,将原始字符串添加到对应的字母异位词组中}vector<vector<string>> ret;// 遍历哈希表,将每个字母异位词组添加到结果中for (auto& [k, v] : hash) {ret.emplace_back(v);}return ret;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

七、Mybatis缓存

缓存就是内存中的数据&#xff0c;常常来自对数据库查询结果的保存&#xff0c;使用缓存、可以避免频繁的与数据库进行交互&#xff0c;进而提高响应速度一级缓存是sqlSession级别的缓存&#xff0c;在操作数据库时需要构造sqlsession对象&#xff0c;在对象中有一个数据结构&a…

【智能家居入门3】(MQTT服务器、MQTT协议、微信小程序、STM32)

前面已经写了三篇博客关于智能家居的&#xff0c;服务器全都是使用ONENET中国移动&#xff0c;他最大的优点就是作为数据收发的中转站是免费的。本篇使用专门适配MQTT协议的MQTT服务器&#xff0c;有公用的&#xff0c;也可以自己搭建&#xff08;应该要钱&#xff09;&#xf…

【Java程序员面试专栏 分布式中间件】ElasticSearch 核心面试指引

关于ElasticSearch 部分的核心知识进行一网打尽,包括ElasticSearch 的基本概念,基本架构,工作流程,存储机制等,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 基础概念 从数据分类入手,考察全文索引的基本概念 现实世界中数据有哪…

量子算法入门——2.线性代数与复数

参考资料&#xff1a; 【【零基础入门量子计算-第03讲】线性代数初步与复数】 来自b站up&#xff1a;溴锑锑跃迁 建议关注他的更多高质量文章&#xff1a;CSDN&#xff1a;【溴锑锑跃迁】 0. 前言 强烈建议搭配b站原视频进行观看&#xff0c;这只是我当时看的笔记&#xff0c…

【机器学习笔记】4 朴素贝叶斯

贝叶斯方法 贝叶斯分类 贝叶斯分类是一类分类算法的总称&#xff0c;这类算法均以贝叶斯定理为基础&#xff0c;故统称为贝叶斯分类。 朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。 先验概率 根据以往经验和分析得到的概率。我们用&#x1d443;(&#x1d44c;)来代…

FL Studio 21.2.3.4004 All Plugins Edition Win/Mac音乐软件

FL Studio 21.2.3.4004 All Plugins Edition 是一款功能强大的音乐制作软件&#xff0c;提供了丰富的音频处理工具和插件&#xff0c;适用于专业音乐制作人和爱好者。该软件具有直观的用户界面&#xff0c;支持多轨道录音、混音和编辑&#xff0c;以及各种音频效果和虚拟乐器。…

华清远见嵌入式学习——春节作业——2.15日

作业要求&#xff1a; 编写led驱动&#xff0c;通过应用程序控制三盏灯亮灭 作业答案&#xff1a; 作业效果&#xff1a; mychrdev.c #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/uaccess.h> #incl…

基于GPT-4一键完成数据分析全流程的AI Agent: Streamline Analyst

大型语言模型&#xff08;LLM&#xff09;的兴起不仅为获取知识和解决问题开辟了新的可能性&#xff0c;而且催生了一些新型智能系统&#xff0c;例如旨在辅助用户完成特定任务的AI Copilot以及旨在自动化和自主执行复杂任务的AI Agent&#xff0c;使得编程、创作等任务变得高效…

医卫答案在哪搜?九个公众号和软件推荐清单! #笔记#笔记#微信

在这个信息爆炸的时代&#xff0c;合理利用学习工具可以帮助我们过滤和获取有用的知识。 1.粉鹿搜题 这是一个公众号 题库包括四六级答案、各学校往期课后答案、期末考试题等&#xff0c;使用比较简单。 下方附上一些测试的试题及答案 1、最有可能担任债券发行受托人的个人…

装饰工程|装饰工程管理系统-项目立项子系统的设计与实现|基于Springboot的装饰工程管理系统设计与实现(源码+数据库+文档)

装饰工程管理系统-项目立项子系统目录 目录 基于Springboot的装饰工程管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能实现 &#xff08;2&#xff09;合同报价管理 &#xff08;3&#xff09;装饰材料总计划管理 &#xff08;4&#xff0…

Java与JavaScript的区别与联系

Java是目前编程领域使用非常广泛的编程语言&#xff0c;相较于JavaScript&#xff0c;Java更被人们熟知。很多Java程序员想学门脚本语言&#xff0c;一看JavaScript和Java这么像&#xff0c;很有亲切感&#xff0c;那干脆就学它了&#xff0c;这也间接的帮助了JavaScript的发展…

OLED显示红外遥控键码

基本原理 本遥控器的编码是NEC编码&#xff0c;为PWM&#xff08;脉冲宽度调制&#xff09;。 发射红外载波的时间固定&#xff0c;通过改变不发射载波的时间来改变占空比。 逻辑“0”是由0.56ms的38KHZ载波和0.560ms的无载波间隔组成&#xff1b;逻辑“1”是由0.56ms的38KHZ…

LabVIEW高效电磁阀性能测试

LabVIEW高效电磁阀性能测试 在核电站的安全运营中&#xff0c;电磁阀作为关键组件&#xff0c;其性能的可靠性至关重要。设计一套基于LabVIEW的电磁阀测试平台&#xff0c;既能精准测试电磁阀的多项性能指标&#xff0c;又能提高检修效率与准确性&#xff0c;进而保障核电站的…

接口测试全流程扫盲

扫盲内容&#xff1a; 1.什么是接口&#xff1f; 2.接口都有哪些类型&#xff1f; 3.接口的本质是什么&#xff1f; 4.什么是接口测试&#xff1f; 5.问什么要做接口测试&#xff1f; 6.怎样做接口测试&#xff1f; 7.接口测测试点是什么&#xff1f; 8.接口测试都要掌…

​StableSwarmUI#超越文本的prompt

今天看到一个新的webui方案&#xff0c;是Stability-AI开源的&#xff1a; StableSwarmUI 是一个模块化的稳定扩散web用户界面&#xff0c;着重于使强大的工具易于访问、高性能和可扩展性。 由于项目还在开发中&#xff0c;我们可以先了解下&#xff0c;翻看了它的特点&#xf…

ELAdmin 发送邮件

邮箱配置 ELAdmin目录中选择系统工具->邮件工具。 发件人邮箱&#xff1a;发送者的邮箱地址发件用户名&#xff1a;一般都是发件人邮箱前面的部分&#xff0c;也可以任意写邮箱密码&#xff1a;如果是 qq 邮箱或者腾讯企业邮箱&#xff0c;需要使用授权码。SMTP地址&…

表的连接

目录 内连接实现效果 使用左外连接&#xff0c;将所有的员工信息都显示出来&#xff0c;即便他没有对应的部门 使用右外连接&#xff0c;将所有的部门信息都显示出来 查询每个员工的编号、姓名、职位&#xff0c;以及所在各部门的领导姓名、领导职位 确定所需要的数据表 确…

多模态基础--- word Embedding

1 word Embedding 原始的单词编码方式&#xff1a; one-hot&#xff0c;维度太大&#xff0c;不同单词之间相互独立&#xff0c;没有远近关系区分。 wordclass&#xff0c;将同一类单词编码在一起&#xff0c;此时丢失了类别和类别间的相关信息&#xff0c;比如class1和class3…

应急响应实战笔记02日志分析篇(3)

第3篇:Web日志分析 ox01 Web日志 Web访问日志记录了Web服务器接收处理请求及运行时错误等各种原始信息。通过对WEB日志进行的安全分析&#xff0c;不仅可以帮助我们定位攻击者&#xff0c;还可以帮助我们还原攻击路径&#xff0c;找到网站存在的安全漏洞并进行修复。 我们来…

【牛客面试必刷TOP101】Day21.BM11 链表相加(二)和BM12 单链表的排序

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;牛客面试必刷TOP101 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01;&…