「数据结构」栈和队列

栈的基本概念

  1. 定义
    1. 栈是只允许在一端进行插入或删除操作的线性表
    2. 栈顶:线性表允许进行插入删除的那一端
    3. 栈底:固定的,不允许进行插入和删除的另一端
    4. 空栈:不含任何元素
    5. 特点:后进先出(LIFO)
  2. 基本操作
    1. InitStack(&S):初始化一个空栈S
    2. StackEmpty(S):判断一个栈是否为空,若栈S为空则返回true,否则返回false
    3. Push(&S,x):进栈,若栈S未满,则将x加入使之成为新栈顶
    4. Pop(&S,%=&x):出栈,若栈S非空,则用x返回栈顶元素
    5. GetTop(S,&x):读栈顶元素,若栈S非空,则用x返回栈顶元素
    6. DestroyStack(&S):销毁栈,并释放栈S占用的存储空间
  3. 卡特兰数:n个不同元素进栈,出栈元素的不同排列的个数为 1 n + 1 C 2 n n \frac{1}{n+1}C^n_{2n} n+11C2nn

栈的顺序存储结构

  1. 顺序栈的定义
#define MaxSize 10         //定义栈中元素的最大个数typedef struct{ElemType data[MaxSize];       //静态数组存放栈中元素int top;                      //栈顶元素
}SqStack;void testStack(){SqStack S;       //声明一个顺序栈(分配空间)//连续的存储空间大小为 MaxSize*sizeof(ElemType)
}
  1. 基本操作
#define MaxSize 10         //定义栈中元素的最大个数typedef struct{ElemType data[MaxSize];       //静态数组存放栈中元素int top;                      //栈顶元素
}SqStack;//初始化栈
void InitStack(SqStack &S){S.top = -1;                   //初始化栈顶指针
}//判栈空
bool StackEmpty(SqStack S){if(S.top == -1)      //栈空return true;else                 //栈不空return false;
}//新元素进栈
bool Push(SqStack &S, ElemType x){if(S.top == MaxSize - 1)        //栈满return false;S.top = S.top + 1;    //指针先加1S.data[S.top] = x;    //新元素入栈/*S.data[++S.top] = x;*/return true;
}//出栈
bool Pop(SqStack &x, ElemType &x){if(S.top == -1)          //栈空return false;x = S.data[S.top];       //先出栈S.top = S.top - 1;       //栈顶指针减1return true;/*x = S.data[S.top--];*///只是逻辑上的删除,数据依然残留在内存里
}//读栈顶元素
bool GetTop(SqStack S, ElemType &x){if(S.top == -1)return false;x = S.data[S.top];      //x记录栈顶元素return true; 
}void testStack(){SqStack S;       //声明一个顺序栈(分配空间)InitStack(S);//...
}
  1. 栈满条件:top==MaxSize
  2. 顺序栈的缺点:栈的大小不可变
  3. 共享栈
    1. 定义:利用栈底位置相对不变的特性,可以让两个顺序栈共享一个一维数组空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸

栈的链式存储结构

与链表类似,入栈和出栈的操作都在链表的表头进行

队列

队列的概念

  1. 定义:队列是只允许在一端进行插入(入队),在另一端删除(出队)的线性表
  2. 队头:允许删除的一端
  3. 队尾:允许插入的一端
  4. 空队列:不含任何元素的空表
  5. 队列的特点:先进先出(FIFO)
  6. 队列的基本操作
    1. InitQueue(&Q): 初始化队列,构造一个空队列Q
    2. DestroyQueue(&Q): 销毁队列,并释放队列Q所占用的内存空间
    3. EnQueue(&Q, x): 入队,若队列Q未满,将x加入,使之成为新的队尾
    4. DeQueue(&Q, &x): 出队,若队列Q非空,删除队头元素,并用x返回
    5. GetHead(Q,&x): 读队头元素,若队列Q非空,则将队头元素赋值给x
    6. QueueEmpty(Q): 判队列空,若队列Q为空,则返回true,否则返回false

队列的顺序存储结构

  1. 队列的顺序实现
# define MaxSize 10;     //定义队列中元素的最大个数
typedef struct{ElemType data[MaxSize];   //用静态数组存放队列元素int front, rear;          //队头指针和队尾指针
}SqQueue;
  1. 初始化操作
//初始化队列
void InitQueue(SqQueue &Q){//初始化时,队头、队尾指针指向0Q.rear = Q.front = 0;
}// 判断队列是否为空
bool QueueEmpty(SqQueue 0){if(Q.rear == Q.front)    //队空条件return true;else return false;
}
  1. 入队操作
bool EnQueue(SqQueue &Q, ElemType x){if((Q.rear+1)%MaxSize == Q.front)    //队满return false;    //队满报错Q.data[Q.rear] = x;    //将x插入队尾Q.rear = (Q.rear + 1) % MaxSize;    //队尾指针加1取模return true;
}
  1. 出队操作
//出队,删除一个队头元素,用x返回
bool DeQueue(SqQueue &Q, ElemType &x){if(Q.rear == Q.front)              //队空报错return false;  x = Q.data[Q.front];Q.front = (Q.front + 1) % MaxSize; //队头指针后移动return true;
}
  1. 获得队头元素
bool GetHead(SqQueue &Q, ElemType &x){if(Q.rear == Q.front)              //队空报错return false;  x = Q.data[Q.front];return true;
}
  1. 判断队列已满/已空
    1. 方案一:牺牲一个存储单元(实现代码同1)
      1. 初始化时:rear=front=0;
      2. 队空条件:Q.rear==Q.front;
      3. 队满条件:(Q.rear+1)%MaxSize == Q.front
      4. 队列元素个数:(rear+MaxSize-front)%MaxSize;
    2. 方案二
      1. 实现
      #define MaxSize 10;     //定义队列中元素的最大个数
      typedef struct{ElemType data[MaxSize];   //用静态数组存放队列元素int front, rear;          //队头指针和队尾指针int size;
      }SqQueue;
      
      1. 初始化时
      rear=front=0;
      size=0;
      
      1. 插入成功:size++;
      2. 删除成功:size--;
      3. 队满条件:size==Maxsize;
      4. 队空条件:size==0;
    3. 方案三
      1. 实现
      #define MaxSize 10;     //定义队列中元素的最大个数
      typedef struct{ElemType data[MaxSize];   //用静态数组存放队列元素int front, rear;          //队头指针和队尾指针int tag;    //最近进行的是删除/插入
      }SqQueue;
      
      1. 初始化时
      rear=front=0;
      tag=0;
      
      1. 插入成功:tag=1;
      2. 删除成功:tag=0;
      3. 队满条件:rear==front&&tag==1;
      4. 队空条件:rear==front&&tag==0;

队列的链式存储结构

  1. 定义队列
typedef struct LinkNode{      //链式队列结点ElemType data;struct LinkNode *next;
}typedef struct{               //链式队列LinkNode *front, *rear;   //队列的队头和队尾指针
}LinkQueue;
  1. 初始化

    1. 带头结点
    void InitQueue(LinkQueue &Q){//初始化时,front、rear都指向头结点Q.front = Q.rear = (LinkNode*)malloc(sizeof(LinkNode));Q.front -> next = NULL;
    }//判断队列是否为空
    bool IsEmpty(LinkQueue Q){if(Q.front == Q.rear)     //也可用 Q.front -> next == NULLreturn true;elsereturn false;
    }
    
    1. 不带头结点
    void InitQueue(LinkQueue &Q){//初始化时,front、rear都指向NULLQ.front = NULL;Q.rear = NULL;
    }//判断队列是否为空
    bool IsEmpty(LinkQueue Q){if(Q.front == NULL)return true;elsereturn false;
    }
    
  2. 入队

    1. 带头结点
    //新元素入队 (表尾进行)
    void EnQueue(LinkQueue &Q, ElemType x){LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode)); //申请一个新结点s->data = x;s->next = NULL;     //s作为最后一个结点,指针域指向NULLQ.rear->next = s;   //新结点插入到当前的rear之后Q.rear = s;         //表尾指针指向新的表尾
    }
    
    1. 不带头结点
    //新元素入队
    void EnQueue(LinkQueue &Q, ElemType x){LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode)); //申请一个新结点s->data = x;s->next = NULL;if(Q.front==NULL){    //在空队列中插入第一个元素Q.front=s;    //修改队头队尾指针Q.rear=s;}else{Q.rear->next=s;    //新结点插入到rear结点之后Q.rear=s;    //修改rear指针}
    }
    
  3. 出队

    1. 带头结点
    //队头元素出队
    bool DeQueue(LinkQueue &Q, ElemType &x){if(Q.front == Q.rear)return false;                    //空队LinkNode *p = Q.front->next;    //p指针指向即将删除的结点x = p->data;Q.front->next = p->next;             //修改头结点的next指针if(Q.rear == p)                      //此次是最后一个结点出队Q.rear = Q.front;                //修改rear指针free(p);                             //释放结点空间return true;
    }
    
    1. 不带头结点
    //队头元素出队
    bool DeQueue(LinkQueue &Q, ElemType &x){if(Q.front == Q.rear)return false;                    //空队LinkNode *p = Q.front;    //p指针指向即将删除的结点x = p->data;Q.front = p->next;             //修改头结点的next指针if(Q.rear == p){    //此次是最后一个结点出队Q.rear==NULL:Q.front==NULL;}                      free(p);     //释放结点空间return true;
    }
    

双端队列

  1. 定义:只允许从两端插入、两端删除的线性表
    1. 输入受限的双端队列:允许一端插入,两端删除的线性表
    2. 输出受限的双端队列:允许两端插入,一端删除的线性表

栈和队列的应用

栈在括号匹配中的应用

#define MaxSize 10   typedef struct{char data[MaxSize];int top;
} SqStack;//初始化栈
InitStack(SqStack &S)//判断栈是否为空
bool StackEmpty(SqStack &S)//新元素入栈
bool Push(SqStack &S, char x)//栈顶元素出栈,用x返回
bool Pop(SqStack &S, char &x)bool bracketCheck(char str[], int length){SqStack S;      //声明InitStack(S);   //初始化栈for(int i=0; i<length; i++){if(str[i] == '(' || str[i] == '[' || str[i] == '{'){Push(S, str[i]);       //扫描到左括号,入栈}else{if(StackEmpty(S))      //扫描到右括号,且当前栈空return false;      //匹配失败char topElem;          //存储栈顶元素Pop(S, topElem);       //栈顶元素出栈if(str[i] == ')' && topElem != '(' )return false;if(str[i] == ']' && topElem != '[' )return false;if(str[i] == '}' && topElem != '{' )return false;       }}StackEmpty(S); //栈空说明匹配成功
}

栈在表达式值中的应用

中缀表达式
(需要界限符)

  1. 规则:运算符在两个操作数中间
    1. a + b
    2. a + b - c
    3. a + b - c*d

后缀表达式 (逆波兰表达式)

  1. 规则:运算符在两个操作数后面
    1. a b +
    2. ab+ c - / a bc- +
    3. ab+ cd* -
  2. 中缀表达式转后缀表达式
    1. 确定中缀表达式中各个运算符的运算顺序
    2. 选择下一个运算符,按照[左操作数 右操作数 运算符]的方式组合成一个新的操作数
    3. 如果还有运算符没被处理,继续步骤2

“左优先”原则: 只要左边的运算符能先计算,就优先算左边的 (保证运算顺序唯一)

  1. 用栈实现中缀表达式转后缀表达式
    1. 初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。从左到右处理各个元素,直到末尾。可能遇到三种情况
      1. 遇到操作数: 直接加入后缀表达式
      2. 遇到界限符: 遇到 ‘(’ 直接入栈; 遇到 ‘)’ 则依次弹出栈内运算符并加入后缀表达式,直到弹出 ‘(’ 为止。注意: ‘(’ 不加入后缀表达式
      3. 遇到运算符: 依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,若碰到 ‘(’ 或栈空则停止。之后再把当前运算符入栈
    2. 按上述方法处理完所有字符后,将栈中剩余运算符依次弹出,并加入后缀表达式
  2. 后缀表达式的计算:从左往右扫描,每遇到一个运算符,就让运算符前面最近的两个操作数执行对应的运算,合体为一个操作数
  3. 用栈实现后缀表达式的计算(栈用来存放当前暂时不能确定运算次序的操作数)
    1. 从左往后扫描下一个元素,直到处理完所有元素
    2. 若扫描到操作数,则压入栈,并回到步骤1;否则执行步骤3
    3. 若扫描到运算符,则弹出两个栈顶元素,执行相应的运算,运算结果压回栈顶,回到步骤1

先出栈的是“右操作数”

前缀表达式 (波兰表达式)

  1. 规则:运算符在两个操作数前面
      • a b
    1. +ab c
      • +ab *cd
  2. 中缀表达式转前缀表达式
    1. 确定中缀表达式中各个运算符的运算顺序
    2. 选择下一个运算符,按照[运算符 左操作数 右操作数]的方式组合成一个新的操作数
    3. 如果还有运算符没被处理,就继续执行步骤2

“右优先”原则: 只要右边的运算符能先计算,就优先算右边的;

  1. 用栈实现前缀表达式的计算
    1. 从右往左扫描下一个元素,直到处理完所有元素
    2. 若扫描到操作数则压入栈,并回到步骤1,否则执行步骤3
    3. 若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到步骤1;

先出栈的是“左操作数”

4.中缀表达式的计算(用栈实现):两个算法的结合: 中缀转后缀 + 后缀表达式的求值
1. 初始化两个栈,操作数栈运算符栈
2. 若扫描到操作数,压入操作数栈
3. 若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈 (期间也会弹出运算符,每当弹出一个运算符时,就需要再弹出两个操作数栈的栈项元素并执行相应运算,运算结果再压回操作数栈)

栈在递归中的应用

  1. 函数调用的特点:最后被调用的函数最先执行结束(LIFO)
  2. 函数调用时,需要用一个栈存储
    1. 调用返回地址
    2. 实参
    3. 局部变量
  3. 递归调用时,函数调用栈称为 “递归工作栈”
    1. 每进入一层递归,就将递归调用所需信息压入栈顶
    2. 每退出一层递归,就从栈顶弹出相应信息
    3. 缺点: 太多层递归可能回导致栈溢出

数组和特殊矩阵

数组的定义

数组是由n(n>=1)个相同类型的数据元素构成的有限序列,每个数据元素称为一个数组元素,每个元素在n个线性关系中的序号称为该元素的下标,下标的取值范围称为数组的维界

数组的存储结构

  1. 一维数组
    1. 各数组元素大小相同,物理上连续存放
    2. 数组下标:默认从0开始
    3. 数组元素 a[i] 的存放地址 = L O C + i ∗ s i z e o f ( E l e m T y p e ) LOC + i * sizeof(ElemType) LOC+isizeof(ElemType)
      1. LOC为数组起始地址
  2. 二维数组
    1. 行优先/列优先存储优点:实现随机存储
    2. M行N列的二维数组 b[M][N] 中,b[i][j]的存储地址:
      1. 行优先存储: L O C + ( i × N + j ) × s i z e o f ( E l e m T y p e ) LOC + (i×N + j) × sizeof(ElemType) LOC+(i×N+j)×sizeof(ElemType)
      2. 列优先存储: L O C + ( j × M + i ) × s i z e o f ( E l e m T y p e ) LOC + (j×M + i) × sizeof(ElemType) LOC+(j×M+i)×sizeof(ElemType)
  3. 普通矩阵的存储:使用二维数组存储

描述矩阵元素时,行、列号通常从1开始
描述数组时,通常下标从 0 开始

特殊矩阵的压缩存储

矩阵的压缩存储:为多个相同的非零元素只分配一个存储空间;对零元素不分配空间。

  1. 对称矩阵
    1. 若n 阶方阵中任意一个元素 a i , j a_{i,j} ai,j都有 a i , j = a j , i a_{i,j}=a_{j,i} ai,j=aj,i则该矩阵为对称矩阵
    2. 策略:只存储主对角线+下三角区;按行优先原则将各元素存入一维数组中
    3. 数组大小: n ( n + 1 ) 2 \frac{n(n+1)}{2} 2n(n+1)
    4. 元素下标对应关系:k为 a i , j a_{i,j} ai,j在一维数组中的下标

k = { i ( i − 1 ) 2 + j − 1 , i ≥ j ( 下三角区和主对角线元素 ) j ( j − 1 ) 2 + i − 1 , i < j ( 上三角区元素 a i , j = a j , i ) k= \left\{ \begin{array}{l} \frac{i(i-1)}{2}+j-1, \quad i \ge j \quad (下三角区和主对角线元素) \\ \frac{j(j-1)}{2}+i-1, \quad i<j \quad (上三角区元素a_{i,j}=a_{j,i}) \ \end{array} \right. k={2i(i1)+j1,ij(下三角区和主对角线元素)2j(j1)+i1,i<j(上三角区元素ai,j=aj,i) 

  1. 三角矩阵
    1. 以主对角线划分,三角矩阵有上(下)三角两种。上(下)三角矩阵的下(上)三角(不含主对角线)中的元素均为常数。在大多数情况下,三角矩阵常数为零
    2. 策略:按行优先原则将元素存入一维数组中(同对称矩阵)。并在最后一个位置存储常量
    3. 元素下标对应关系:k为 a i , j a_{i,j} ai,j在一维数组中的下标

k = { i ( i − 1 ) 2 + j − 1 , i ≥ j ( 下三角区和主对角线元素 ) n ( n + 1 ) 2 , i < j ( 上三角区元素 a i , j = a j , i ) k= \left\{ \begin{array}{l} \frac{i(i-1)}{2}+j-1, \quad i \ge j \quad (下三角区和主对角线元素) \\ \frac{n(n+1)}{2}, \quad i<j \quad (上三角区元素a_{i,j}=a_{j,i}) \ \end{array} \right. k={2i(i1)+j1,ij(下三角区和主对角线元素)2n(n+1),i<j(上三角区元素ai,j=aj,i) 
3. 三对角矩阵(带状矩阵)
1. 当 ∣ i − j ∣ > 1 |i-j|>1 ij>1时,有 a i , j = 0 ( 1 ≤ i , j ≤ n ) a_{i,j}=0 (1 \leq i,j \leq n) ai,j=0(1i,jn)
2. 策略:按行优先(或列优先) 原则,只存储带状部分
3. 元素下标对应关系:k为 a i , j a_{i,j} ai,j在一维数组中的下标 k=2i+j-3

稀疏矩阵

  1. 非零元系远远少于矩阵元素的个数
  2. 策略
    1. 顺序存储——三元组<行,列,值>
      1. 会失去随机存取的特性
    2. 十字链表法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683701.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

求排列的逆序数

每日一道算法题之求排列的逆序数 一、题目描述二、思路三、C代码 一、题目描述 一个排列含有逆序的个数称为这个排列的逆序数。例如排列 263451 含有8个逆序(2,1),(6,3),(6,4),(6,5),(6,1),(3,1),(4,1),(5,1)&#xff0c;因此该排列的逆序数就是8。显然&#xff0c;由1,2,…,n …

【Spring MVC篇】返回响应

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【Spring MVC】 本专栏旨在分享学习Spring MVC的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、返回静态页面…

(13)Hive调优——动态分区导致的小文件问题

前言 动态分区指的是&#xff1a;分区的字段值是基于查询结果自动推断出来的&#xff0c;核心语法就是insertselect。 具体内容指路文章&#xff1a; https://blog.csdn.net/SHWAITME/article/details/136111924?spm1001.2014.3001.5501文章浏览阅读483次&#xff0c;点赞15次…

回归预测模型:MATLAB神经网络回归模型

1.神经网络回归模型的基本原理 神经网络是一种由节点&#xff08;或称为“神经元”&#xff09;和边组成的网络结构&#xff0c;用于模拟人脑分析和处理信息的方式。在回归问题中&#xff0c;神经网络旨在预测一个连续值的输出&#xff0c;基于给定的一组输入特征。 一个基本…

假期作业 2月15日

字符串练习 1、选择题 1.1、有以下程序 int main() { char a[7]"a0\0a0\0";int i,j; isizeof(a); jstrlen(a); printf("%d %d\n",i,j); } //strlen求出字符串的长度&#xff0c;其实是字符串中字符的个数&#xff0c;不包括\0 程序运行后的输出…

如何买卖基金

一、从哪买卖&#xff1f; &#xff08;一&#xff09;购买渠道 有两种购买渠道&#xff1a;直销平台和代销平台。 1.直销平台 就是基金公司。 每个基金公司只能卖自家基金产品。比如招商基金只能卖招商基金管理的基金&#xff0c;而不能卖广发基金的产品。 如何去基金公司购…

2024年最新onlyfans虚拟信用卡订阅教程

一、Onlyfans是什么&#xff1f; OnlyFans是一个允许创作者分享自己的独家内容的平台&#xff0c;简称o站。这个平台允许创作者创建一个订阅服务&#xff0c;粉丝需要支付费用才能访问其独家内容。 本文将教你如何使用虚拟卡在OnlyFans上进行充值。 二、如何使用虚拟卡支付 O…

变形金刚:第 2 部分:变形金刚的架构

目录 一、说明 二、实现Transformer的过程 第 1 步&#xff1a;代币化&#xff08;Tokenization&#xff09; 第 2 步&#xff1a;对每个单词进行标记嵌入 第 3 步&#xff1a;对每个单词进行位置嵌入 第 4 步&#xff1a;输入嵌入 第 5 步&#xff1a;编码器层 2.5.1 多头自注…

洛谷 9242.接龙数列

这道题有点难度&#xff0c;是动态规划经典问题最长上升序列的变式&#xff0c;需要压缩dp数组。 思路&#xff1a;从题目中知道了&#xff0c;数的大小其实是无所谓的&#xff0c;我们只关心这个数的首位和末尾是怎么样的。显然&#xff0c;如果说强力暴力分析的话&#xff0…

【MySQL】高度为2和3时B+树能够存储的记录数量的计算过程

文章目录 题目答案高度为2时的B树高度为3时的B树总结 GPT4 对话过程 题目 InnoDB主键索引的Btree在高度分别为 2 和 3 时&#xff0c;可以存储多少条记录&#xff1f; 答案 高度为2时的B树 计算过程&#xff1a; 使用公式 ( n 8 ( n 1 ) 6 16 1024 ) (n \times 8 …

二维数组及函数的非函数实现

2024年2月14日 1.请编程实现二维数组的杨慧三角 #include<stdio.h> #include<stdlib.h> #include<string.h> void Yanghui(int n,int (*p)[n]) {for(int i0;i<n;i){for(int j0;j<i;j){if(j0||ij){*(*(pi)j)1;}else{*(*(pi)j)*(*(pi-1)j-1)*(*(pi-1)j)…

vim命令编辑完文件后,按ESC键退出编辑模式,无法进入命令模式解决方案

发现问题 在Vim编辑器中&#xff0c;我们通常需要按Esc键来退出编辑模式并进入命令模式。但有时&#xff0c;你可能会发现即使按了Esc键&#xff0c;也无法进入命令模式。这可能是由于某些设置或插件导致的。不过&#xff0c;有一个解决办法可以帮助你解决这个问题。 解决办法…

相机图像质量研究(15)常见问题总结:光学结构对成像的影响--暗角

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

456. 车站分级(拓扑排序,虚拟点建图)

活动 - AcWing 一条单向的铁路线上&#xff0c;依次有编号为 1, 2, …, n1,  的 n 个火车站。 每个火车站都有一个级别&#xff0c;最低为 1 级。 现有若干趟车次在这条线路上行驶&#xff0c;每一趟都满足如下要求&#xff1a;如果这趟车次停靠了火车站 x&#xff0c;…

实现常用string

成员变量 class string{public: private:char* _str;size_t _size;size_t _capacity;}; 构造函数 string()//1:_str(new char[1])//:_str(nullptr),_size(0),_capacity(0){_str[0] \0;} new char[1]为了统一析构数组 string(const char* str "\0"):_size(strlen(…

Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG

作者&#xff1a;来自 Elastic Steve Dodson 有多种策略可以将特定领域的知识添加到大型语言模型 (LLM) 中&#xff0c;并且作为积极研究领域的一部分&#xff0c;正在研究更多方法。 对特定领域数据集进行预训练和微调等方法使 LLMs 能够推理并生成特定领域语言。 然而&#…

指针练习题

一&#xff0e;选择题 1.变量的指针&#xff0c;其含义是指该变量的 B 。 A&#xff09;值 B&#xff09;地址 C&#xff09;名 D&#xff09;一个标志 2.已有定义int k2;int *ptr1,*ptr2;且ptr1和ptr2均已指向变量k&…

【深入理解DETR】DETR的原理与算法实现

1 DETR算法概述 ①端到端 ②Transformer-model 之前的方法都需要进行NMS操作去掉冗余的bounding box或者手工设计anchor&#xff0c; 这就需要了解先验知识&#xff0c;增加从超参数anchor的数量&#xff0c; 1.1 训练测试框架 一次从图像中预测n个object的类别 训练阶段我们…

Attention Is All Your Need论文翻译

0.摘要 这个统治序列转换模型是基于复杂循环或者卷积神经网络&#xff0c;它包含编码器和解码器。表现最好的模型也通过注意力机制来连接编码器和解码器。我们提出了一个新的简单网络架构——Transformer,它仅仅是是基于注意力机制&#xff0c;完全免去递推和卷积。在两个机器…

C语言——函数(第五讲)(上)

C语言——函数&#xff08;第五讲&#xff09; 前言函数的概念库函数标准库和库函数库函数的使用方法 ⾃定义函数形式形参和实参形参和实参的关系 前言 Hello,各位C语言的小伙伴们&#xff0c;大家过年好&#xff0c;我是莹莹。停更差不多一个月了&#xff0c;都是懒惰作怪&am…