Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG

作者:来自 Elastic Steve Dodson

有多种策略可以将特定领域的知识添加到大型语言模型 (LLM) 中,并且作为积极研究领域的一部分,正在研究更多方法。 对特定领域数据集进行预训练和微调等方法使 LLMs 能够推理并生成特定领域语言。 然而,使用这些 LLM 作为知识库仍然容易产生幻觉。 如果领域语言与 LLM 训练数据相似,则通过检索增强生成 (RAG) 使用外部信息检索系统向 LLM 提供上下文信息可以改善事实响应。 最终,微调和 RAG 的组合可能会提供最佳结果。

该博客试图描述一些存储和检索 LLMs 知识的基本过程。 后续博客将更详细地描述不同的 RAG 策略。

Pre-training(预训练)Fine-tuning (微调)Retrieval Augmented Generation (RAG)
训练时间几天,几周甚至几个月几分钟到几小时不需要
定制需要大量领域训练数据

可定制模型架构、大小, 分词器等

创建新的 “基础” LLM 模型
添加特定于域的数据

针对特定任务进行调整。

更新LLM模型。
没有模型权重

外部信息检索系统可以调整以与 LLM 对齐。

提示可以优化以提高任务性能。
目的下一个 token 预测提高任务绩效提高特定领域文档集的任务性能
专业知识

介绍

基于大型语言模型 (LLM) 的生成式人工智能技术极大地提高了我们开发处理、理解和生成文本工具的能力。 此外,这些技术引入了创新的信息检索机制,其中生成式人工智能技术使用模型存储的(参数)知识直接响应用户查询。

然而,值得注意的是,模型的参数知识是整个训练数据集的浓缩表示。 因此,将这些技术应用于原始训练数据之外的特定知识库或领域确实存在一定的局限性,例如:

  • 生成人工智能的响应可能缺乏上下文或准确性,因为它们无法访问训练数据中不存在的信息。
  • 有可能产生听起来合理但不正确或误导性的信息(幻觉)。

存在不同的策略来克服这些限制,例如扩展原始训练数据、微调模型以及与特定领域知识的外部源集成。 这些不同的方法会产生不同的行为并带来不同的实施成本。

特定领域的预训练

LLMs 接受了代表各种自然语言用例的庞大数据集的预训练:

模型总数据集大小数据来源训练成本
PaLM 540B7800 亿  tokens社交媒体对话(多语言)50%; 过滤网页(多语言)27%; 书籍(英文)13%; GitHub(代码)5%; 维基百科(多语言)4%; 新闻(英文)1%8.4M TPU v2 hours
GPT-34990 亿 tokens普通爬行(已过滤)60%; WebText2 22%; 书籍18%; 书籍 28%; 维基百科 3%0.8M GPU hours
LLaMA 22 兆 tokens“来自公开来源的数据混合”3.3M GPU hours 

这个预训练步骤的成本是巨大的,并且需要大量的工作来整理和准备数据集。 这两项任务都需要高水平的技术专业知识。

此外,预训练只是创建模型的第一步。 通常,然后在针对特定任务精心策划和定制的较小数据集上对模型进行微调。 此过程通常还涉及人工审核员,他们对可能的模型输出进行排名和审核,以提高模型的性能和安全性。 这进一步增加了过程的复杂性和成本。

这种方法应用于特定领域的示例包括:

  • ESMFold、ProGen2 等 - 蛋白质序列的 LLM:蛋白质序列可以使用类似语言的序列表示,但不被自然语言模型覆盖
  • Galatica - 科学 LLM:专门接受大量科学数据集的培训,并包括处理科学符号的特殊处理
  • BloombergGPT - 金融 LLM:接受 51% 金融数据、49% 公共数据集的培训
  • StarCoder - 代码 LLM:使用 384 种编程语言的 6.4TB 许可源代码进行培训,并包含 54GB GitHub 问题和存储库级元数据

特定领域模型通常优于各自领域内的通用模型,在与自然语言显着不同的领域(例如蛋白质序列和代码)中观察到最显着的改进。 然而,对于知识密集型任务,这些特定领域模型由于依赖参数知识而受到相同的限制。 因此,虽然这些模型可以更有效地理解领域的关系和结构,但它们仍然容易出现不准确和幻觉。

特定领域的微调

LLMs 的微调涉及针对特定任务或领域训练预先训练的模型,以提高其在该领域的表现。 它通过使用特定于任务的数据更新模型的参数,使模型的知识适应更狭窄的上下文,同时保留在预训练期间获得的一般语言理解。 这种方法针对特定任务优化了模型,与从头开始训练相比,节省了大量时间。

例子

  • Alpaca - 经过微调的 LLaMA-7B 模型,其行为在质量上与 OpenAI 的 GPT-3.5 类似
  • xFinance - 针对特定金融任务的微调 LLaMA-13B 模型。 据报道,其表现优于 BloombergGPT
  • ChatDoctor - 用于医疗聊天的微调 LLaMA-7B 模型。
  • falcon-40b-code-alpaca - 经过微调的 falcon-40b 模型,用于从自然语言生成代码

成本

微调的成本明显低于预训练的成本。 此外,诸如参数高效微调(PEFT)方法(例如如上所述的 LoRA、适配器、提示调整和上下文学习)等新颖方法可以使预训练语言模型(PLM)非常有效地适应各种不同的环境。 下游应用程序无需微调所有模型参数。 例如,

模型微调方法微调数据集成本
Alpaca Self-Instruct52K 条独特的指令和相应的输出3 hours on 8 80GB A100s:24 GPU hours
xFinance使用 xTuring 库进行无监督微调和指令微调493M token文本数据集; 82K指令数据集25 hours on 8 A100 80GB GPUs:200 GPU hours
ChatDoctorSelf-Instruct11 万次医患互动3 hours on 6 A100 GPUS: 18 GPU hours
falcon-40b-code-alpacaSelf-Instruct52K指令数据集; 20K 指令输入代码三元组4 hours on 4 A100 80GB GPUs: 16 GPU hours

与特定领域的预训练模型类似,这些模型通常在各自的领域内表现出更好的性能,但它们仍然面临与参数知识相关的限制。

检索增强生成 - RAG

LLMs 将事实知识存储在其参数中,但他们访问和精确操纵这些知识的能力仍然有限。 这可能会导致 LLMs 提供非事实但看似合理的预测(幻觉)—— 特别是对于不受欢迎的问题。 此外,为他们的决策提供参考并有效地更新他们的知识仍然是开放的研究问题。

解决这些限制的通用方法是 RAG,其中 LLM 的参数知识以来自信息检索系统的外部或非参数知识为基础。 这些知识作为提示中的附加上下文传递给 LLM,并向 LLM 提供有关如何使用此上下文信息的具体说明。这使其更符合迄今为止有关参数知识的讨论。这种方法的优点是 :

  • 与微调和预训练不同,LLM 参数不会改变,因此没有训练成本
  • 简单实施所需的专业知识较低(尽管存在更高级的策略)
  • 响应可以严格限制于从信息检索系统返回的上下文,从而限制幻觉
  • 可以使用较小的特定于任务的 LLM - 因为 LLM 用于特定任务而不是知识库。
  • 知识库很容易更新,因为它不需要改变 LLM
  • 回复可以引用人工验证的来源和链接输出

将这种非参数知识(即检索到的文本)与 LLM 的参数知识相结合的策略是一个活跃的研究领域。

其中一些方法涉及结合检索策略修改 LLM,因此不能像本博客中的定义那样明确分类。 我们将在以后的博客中深入探讨更多细节。

简单的例子

在一个简单的示例中,我们使用了基于本博客信息的微调 LLaMA2 13B 模型。 该模型使用 LLaMA2 预训练和微调数据截止日期(特别是 2023 年 7 月 23 日之后)发布的 AWS 博客文章进行了微调。我们还将这些文档提取到 Elasticsearch 中,并建立了一个简单的 RAG 管道。 在此管道中,模型响应是根据作为上下文的检索到的文档生成的。 红色突出显示表示错误的响应,蓝色突出显示正确的响应。

不过,需要注意的是,这只是一个单一的例子,并不构成对 fine-tuning 与 RAG 的综合评价,只是提供了一个之前的 fine-tuning 的例子,用于形式,而不是事实。我们计划在即将发布的博客中进行更彻底的研究的比较。

原文:Domain Specific Generative AI: Pre-Training, Fine-Tuning, and RAG — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入理解DETR】DETR的原理与算法实现

1 DETR算法概述 ①端到端 ②Transformer-model 之前的方法都需要进行NMS操作去掉冗余的bounding box或者手工设计anchor, 这就需要了解先验知识,增加从超参数anchor的数量, 1.1 训练测试框架 一次从图像中预测n个object的类别 训练阶段我们…

Attention Is All Your Need论文翻译

0.摘要 这个统治序列转换模型是基于复杂循环或者卷积神经网络,它包含编码器和解码器。表现最好的模型也通过注意力机制来连接编码器和解码器。我们提出了一个新的简单网络架构——Transformer,它仅仅是是基于注意力机制,完全免去递推和卷积。在两个机器…

C语言——函数(第五讲)(上)

C语言——函数(第五讲) 前言函数的概念库函数标准库和库函数库函数的使用方法 ⾃定义函数形式形参和实参形参和实参的关系 前言 Hello,各位C语言的小伙伴们,大家过年好,我是莹莹。停更差不多一个月了,都是懒惰作怪&am…

9 个管理 Windows 硬盘的最佳免费磁盘分区软件 [2024 排名]

管理分区可能是一项具有挑战性的任务。当您想到删除、缩小、移动、磁盘分区或合并分区等方面时,您会认为它们是很难做到的事情。然而,虽然 Windows 自己的磁盘管理可以处理大部分问题,但它无法处理管理分区的所有方面。 这时候优质的磁盘管理…

python-游戏篇-初级-超级画板

文章目录 开发环境要求运行方法PyCharmVScode 代码main.pytools.py 效果 开发环境要求 本系统的软件开发及运行环境具体如下。 操作系统:Windows 7、Windows 10。Python版本:Python 3.7.1。开发工具:PyCharm 2018。Python内置模块&#xff…

秒懂百科,C++如此简单丨第十九天:动态规划

目录 动态规划的初步理解 求最短路径数 洛谷 P1002 过河卒 题目描述 输入样例 输出样例 思路 AC Code 动态规划的初步理解 什么是动态规划?最直白的理解就是动态的规划。 那高级一点的理解呢?就是每时每刻都拿着一个小本本,也就是…

「优选算法刷题」:和可被K整除的子数组

一、题目 给定一个整数数组 nums 和一个整数 k ,返回其中元素之和可被 k 整除的(连续、非空) 子数组 的数目。 子数组 是数组的 连续 部分。 示例 1: 输入:nums [4,5,0,-2,-3,1], k 5 输出:7 解释&…

C语言-----函数功能实现---strcpystrlen

1.函数功能参数介绍 该函数的功能就是把一个字符串复制到另外的一个数组,包括\0; 2.首先我们要明确字符串的复制也是包括最后的\0的; void mystrcpy(char* dest, char* src) {while (*src!\0){*dest *src;dest;src;}*dest *src;} int mai…

HGAME 2024 WEEK2 WP

文章目录 WEBWhat the cow say?Select More Coursesmyflask CryptomidRSAmidRSA revengebackpackbackpack revengebabyRSA奇怪的图片plus MISC我要成为华容道高手ek1ng_want_girlfriendezWord龙之舞 回老家了,初七晚上才回去,估计week3前几天不怎么能做…

类加载过程介绍

一、类的生命周期 类被加载到jvm虚拟机内存开始,到卸载出内存为止,他的生命周期可以分为:加载->验证->准备->解析->初始化->使用->卸载。 其中验证、准备、解析统一称为链接阶段 1、加载 将类的字节码载入方法区中&#xf…

docker (一)-简介

1.什么是docker Docker 是一个开源的应用容器引擎,由于docker影响巨大,今天也用"Docker" 指代容器化技术。 2.docker的优势 一键部署,开箱即用 容器使用基于image镜像的部署模式,image中包含了运行应用程序所需的一…

Selenium实战教程系列(二)---元素定位

Selenium webdriver能够模拟人对浏览器进行操作的前提是界面元素的定位。元素的定位可以说是Selenium自动化脚本的基础。这一小节笔者将介绍如何在selenium中进行元素的定位。 定位元素的方法 Selenium中提供了以下定位元素的方法: 首先看一个HTML文件 test_page.…

(14)Hive调优——合并小文件

目录 一、小文件产生的原因 二、小文件的危害 三、小文件的解决方案 3.1 小文件的预防 3.1.1 减少Map数量 3.1.2 减少Reduce的数量 3.2 已存在的小文件合并 3.2.1 方式一:insert overwrite (推荐) 3.2.2 方式二:concatenate 3.2.3 方式三&#xff…

OpenMVG(特征匹配、照片组重建点云、GPS位置信息、GMS)

目录 1 图像的特征匹配 2 图像中提取GPS位置信息 2.1 写入GPS信息到图像中 2.2 读取带有GPS的图像 3 SIFT/AKAZE/AKAZE_MLDB特征提取对比 4 GMS Filter 5 将球形全景图转换为6个透视视图 6 照片组重建点云 1 图像的特征匹配 #include "openMVG/features/feature.…

Python面向对象学习小记——面向过程VS面向对象

【面向过程就好比你是一个工人,你得亲自去做一个个任务 面向对象就好比你一个包工头,你可以差遣你下面的工人去做】

【网站项目】228高校教师电子名片系统

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

PowerShell搭建vue起始项目

Windows PowerShell搭建vue起始项目 搜索PowerShell,以管理员身份运行。 复制文件夹路径 cd 到这个文件夹位置 命令行创建项目:vue create 项目名 这里写自己的项目名就行,我写的yeb vue create yeb 创建成功后是这样的 有颜色的就是选中的&#xff…

“恶意提起知识产权诉讼行为的法律规制”主题研讨活动成功举办

随着我国社会经济的迅速发展以及创新型国家、知识产权强国建设的不断深入,知识产权在社会生活中正发挥着越来越重要的作用。特别是对于广大市场主体而言,知识产权已经不仅是一种私权利,更成为商业竞争中非常重要的一种手段,由此引发了大量的知识产权诉讼纠纷。此类纠纷中,既有权…

C++ new 和 malloc 的区别?

相关系列文章 C new 和 malloc 的区别? C内存分配策略​​​​​​​ 目录 1.引言 2.区别 2.1.申请的内存分配区域 2.2.类型安全和自动大小计算 2.3.构造函数和析构函数的调用 2.4.异常处理 2.5.配对简便性 2.6.new 的重载 2.7.关键字和操作符 3.总结 1.引…