文章目录
- A
- 题目
- AC Code:
- B
- 题目
- AC Code:
- C
- 题目
- AC Code:
- D
- 题目
- AC Code:
- E
- 题目
- 思路
- 做法
- 时间复杂度
- AC Code:
- F
- 题目
- 思路
- AC Code:
A
题目
模拟即可,会循环都能写。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
int a, b, d;int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> a >> b >> d;for (int i = a; i <= b; i += d) cout << i << ' ';return 0;
}
B
题目
这个也是根据题面模拟,存一下序列的长度即可。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
int q, a[100100];
int n;int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> q;while (q --) {int op, x;cin >> op >> x;if (op == 1) {n++;a[n] = x;}else {cout << a[n - x + 1] << '\n';}}return 0;
}
C
题目
可以用递归加优化来完成此题。我们让 f ( x ) f(x) f(x) 表示要擦除 x x x 和擦除它产生的数的代价。然后得到:
f ( x ) = f ( x / 2 ) + f ( x − x / 2 ) + x f(x) = f(x/2) + f(x - x / 2) + x f(x)=f(x/2)+f(x−x/2)+x
然后为了避免重复计算,用 map 存储 f ( x ) f(x) f(x) 的值。如果这个答案没有被计算就计算这个答案,否则直接返回之前存储的答案。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
long long n;
map<long long, long long> m;
long long f(long long x) {if (x < 2) return 0;if (!m[x]) {if (x % 2) {long long tmp1 = f(x / 2), tmp2 = f(x - x / 2);m[x] = tmp1 + tmp2 + x;}else {long long tmp = f(x / 2);m[x] = tmp + tmp + x;}}return m[x];
}
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> n;cout << f(n);return 0;
}
D
题目
把游戏抽象化为一个图,每一个阶段就是一个点,那么连接 i i i 和 i + 1 i + 1 i+1 的边的权值就是 A i A_i Ai,连接 i i i 和 X i X_i Xi 的边的权值就是 B i B_i Bi,然后跑一遍最短路即可。如果没有负权边就不要用 SPFA,容易被卡。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
int n, a[200100], b[200100], x[200100];
struct edge{int u, v, w, nxt;
};
edge ed[400100];
int edcnt, head[200100];
void addedge(int u, int v, int w){edcnt++;ed[edcnt].u = u;ed[edcnt].v = v;ed[edcnt].w = w;ed[edcnt].nxt = head[u];head[u] = edcnt;
}
long long dis[200100];
struct node {int x;long long dis;node(int x_, long long dis_) {x = x_;dis = dis_;}
};
bool operator <(node a, node b) {return a.dis > b.dis;
}
bool vis[514114];
void dijkstra() {priority_queue<node> pq;pq.push(node(1, 0));while (!pq.empty()) {int now = pq.top().x;pq.pop();if (vis[now]) {continue;}if (now == n) break;vis[now] = 1;for (int j = head[now]; j; j = ed[j].nxt) {int v = ed[j].v;if (dis[v] > dis[now] + ed[j].w) {dis[v] = dis[now] + ed[j].w;pq.push(node(v, dis[v]));}}}
}
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> n;for (int i = 1; i < n; i ++) {cin >> a[i] >> b[i] >> x[i];addedge(i, i + 1, a[i]);addedge(i, x[i], b[i]);}memset(dis, 0x3f, sizeof(dis));dis[1] = 0;dijkstra();cout << dis[n];return 0;
}
E
题目
思路
我们发现,如果序列头尾相连,那么我们每次要放的都是一个连续的区间,可以看题目的 GIF 图自行理解。那么这个题就是区间修改,单点查询,一个典型的线段树或树状数组维护差分数组,我用的线段树。
做法
首先,如果我们的球数大于等于 n n n,那么就可以先放 k n kn kn 个球,将每一个盒子都放 k k k 个,对于剩下不足 n n n 个球,设有 p p p 个球,如果往后 p p p 个盒子没有超过 n n n,就把后 p p p 个盒子每一个盒子放一个球,否则,一直放到第 n n n 个盒子,再从第一个盒子开始,放完剩下的球。
时间复杂度
O ( n log 2 ( n ) ) O(n\log_2(n)) O(nlog2(n)),合格。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
long long n, m, a[200100], b[200100];
struct node{long long l, r;long long sum;
};
node t[1600100];
long long maketree(long long l, long long r, long long p) {t[p].l = l;t[p].r = r;if (l < r) {t[p].sum = maketree(l, (l + r) / 2, p * 2);t[p].sum += maketree((l + r) / 2 + 1, r, p * 2 + 1);}else {if (l) t[p].sum = a[l] - a[l - 1];else t[p].sum = 0;}return t[p].sum;
}
void add(long long i, long long k, long long p) {if (t[p].l <= i && t[p].r >= i) t[p].sum += k;else return;add(i, k, p * 2);add(i, k, p * 2 + 1);
}
long long get(long long l, long long r, long long p) {if (l <= t[p].l && t[p].r <= r) return t[p].sum;if (l > t[p].r || t[p].l > r) return 0;return get(l, r, p * 2) + get(l, r, p * 2 + 1);
}
void add1(long long l, long long r, long long k) {add(l, k, 1);if (r + 1 <= n) add(r + 1, -k, 1);
}
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> n >> m;for (long long i = 1; i <= n; i++) cin >> a[i];for (long long i = 1; i <= m; i++) cin >> b[i];for (long long i = 1; i <= m; i++) b[i]++;maketree(1, n, 1);for (long long i = 1; i <= m; i ++) {long long tmp = get(1, b[i], 1);add1(b[i], b[i], -tmp);long long tmp1 = tmp / n;add1(1, n, tmp1);long long tmp2 = tmp % n;if (tmp2 > n - b[i]) {add1(b[i] + 1, n, 1);add1(1, tmp2 - (n - b[i]), 1);}else {add1(b[i] + 1, b[i] + tmp2, 1);}}for (long long i = 1; i <= n; i ++) {cout << get(1, i, 1) << ' ';}cout << '\n';return 0;
}
F
题目
如果你知道了以 ( 0 , 0 ) , ( A , B ) , ( C , D ) (0, 0), (A, B), (C, D) (0,0),(A,B),(C,D) 为顶点的三角形的面积为 ∣ A D − B C ∣ 2 \frac{|AD - BC|}{2} 2∣AD−BC∣,那么这个问题就很好解决了。
思路
题目给定了 X , Y X,Y X,Y,然后吧唧吧唧一大堆,就是想让我们求出一个 A , B A, B A,B,使得 ∣ A Y − B X ∣ 2 \frac{|AY-BX|}{2} 2∣AY−BX∣ 为 1 1 1,转换一下,就是 ∣ A Y + ( − B ) X ∣ = 1 |AY+(-B)X| = 1 ∣AY+(−B)X∣=1,这不就是典型的扩展欧几里得吗?
我们设 g g g 为 gcd ( X , Y ) \gcd(X, Y) gcd(X,Y),如果 g ≥ 3 g \ge 3 g≥3 那么说明无解,因为当 A X + B Y = gcd ( A , B ) AX + BY = \gcd(A,B) AX+BY=gcd(A,B) 时该方程才有解。将 − Y , X -Y, X −Y,X 带入上述方程求出 A , B A, B A,B,将 A , B A, B A,B 分别乘上 2 g \frac2g g2 就可以得到正确的答案。因为我们要求 A X + B Y = 2 AX + BY = 2 AX+BY=2,而现在是 A X + B Y = g AX +BY = g AX+BY=g,左右两边同时乘上 2 g \frac2g g2 即可。
AC Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
long long x, y;
long long e_gcd(long long a, long long b, long long &x, long long &y) {if (!b) {x = 1ll;y = 0ll;return a;}long long gcd = e_gcd(b, a % b, y, x);y -= a / b * x;return gcd;
}
long long a, b;
long long gcd(long long x, long long y) {if (y == 0ll) return x;return gcd(y, x % y);
}int main() {ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin >> x >> y; long long g = gcd(x, y);e_gcd(y, -x, a, b);if (abs(g) >= 3ll) {cout << -1ll;return 0;}a *= 2ll / g, b *= 2ll / g;cout << a << ' ' << b;return 0;
}