python_numpy库_ndarray的聚合操作、矩阵操作等

一、ndarray的聚合操作

1、求和np.sum()
import numpy as np
​
n = np.arange(10)
print(n)
​
s = np.sum(n)
print(s)
​
n = np.random.randint(0,10,size=(3,5))
print(n)
s1 = np.sum(n)
print(s1)   #全部数加起来
s2 = np.sum(n,axis=0)
print(s2)   #表示每一列的多行求和
s3 = np.sum(n,axis=1)
print(s3)   #表示每一行的多列求和
2、最小值np.min
3、最大值np.max
4、平均值np.mean
5、平均值np.average
6、中位数np.median
7、百分位数np.percentile
8、最小值对应的下标np.argmin
9、最大值对应的下标np.argmax
10、标准差np.std
11、方差np.var
12、次方,求幂np.power
13、按条件查找np.argwhere
14、np.nansum
  • *nan:数值类型,not a number:不是一个正常的数值,表示空

  • *np.nan:float类型

#对于含有空的数组,要用np.nansum进行求和
n = np.array([1,2,3,np.nan])
print(n)
#实质是去掉空值后的数组进行求和
s4 = np.nansum(n)
print(s4)

二、矩阵操作

1、基本的矩阵操作

算术运算符:加减乘除

矩阵和矩阵之间运算

数与矩阵运算

2、矩阵乘积

np.dot(第一个矩阵的列数等于第二个矩阵的行数)

import numpy as np
​
n1 = np.random.randint(0,10,size=(4,4))
n2 = np.random.randint(0,10,size=(4,5))
print(n1,n2)
print()
n3 = np.dot(n1,n2)
print(n3)
3、矩阵的逆
n4 = np.linalg.inv(n2)
print(n4)
4、行列式的计算
n5 = np.round(np.linalg.det(n1))
print(n5)
5、矩阵的秩
n6 = np.linalg.matrix_rank(n1)
print(n6)

三、ndarray的广播机制

(1)、为缺失的维度补维度

(2)、缺失元素用已有的数组填充

import numpy as np
​
x = np.full(shape=(3,3),fill_value=2)
print(x)
y = np.arange(3)
print(y)
z = x+y
print(z)
#注:第二个数组会自动补上两行[0 1 2],然后在进行相加

四、数学操作

import numpy as np
​
n = np.array([1,2,3,5,5,44,55,66])
​
#绝对值
print(np.abs(n))
#平方根
print(np.sqrt(n))
#平方
print(np.square(n))
#指数
print(np.exp(n))
#自然对数
print(np.log(n))
#以2为底的对数
print(np.log2(n))
#以10为底的对数
print(np.log10(n))
#正弦函数
print(np.sin(n))
#余弦函数
print(np.cos(n))
#正切函数
print(np.tan(n))
#向上取整
print(np.ceil(n))
#四舍五入
print(np.round(n,2))
#向下取整
print(np.floor(n))
#累加
print(np.cumsum(n))

五、ndarray的排序

1、np.sort()

不改变输入

import numpy as np
​
n = np.array([55,44,8,2,9,7,3,6])
print(np.sort(n))
print()
2、ndarray.sort()

本地处理,不占用空间,但不改变输入

import numpy as np
​
n1 = np.random.randint(0,10,size=8)
print(n1)
n1.sort()
print(n1)

六、文件操作

1、保存数组到npy或npz文件

save:保存ndarray到一个npy文件。

savez:将多个array保存到一个npz文件中。

import numpy as np
​
x = np.arange(5)
y = np.arange(10,20)
​
np.save('x',x)
np.savez('arr.npz',xarr = x,yarr = y)
a = np.load('x.npy')
b = np.load('arr.npz')['yarr']
​
print(a)
print(b)
2、保存数组到csv或txt文件
n = np.random.randint(0,10,size=(3,4))
#存储到csv或txt
#delimiter = ',':分隔符
np.savetxt('arr.csv',n,delimiter=',')
#读取csv或txt
#注:最新版numpy不能用dtype要用astype
c = np.loadtxt('arr.csv',delimiter=',').astype(np.int8)
print(c)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683218.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《剑指offer》--字符串左旋【超详细建议收藏】

字符串左旋的三种方法 1. 一个一个字符挪2. 库函数---strcpy和strncat3. 三段逆置法 1. 一个一个字符挪 代码实现如下&#xff1a; #include <stdio.h> #include <string.h>void Left_Reverse(char* str,int k) {int len strlen(str);//6int time 0;time k % …

react【六】 React-Router 路由

文章目录 1、Router1.1 路由1.2 认识React-Router1.3 Link和NavLink1.4 Navigate1.5 Not Found页面配置1.6 路由的嵌套1.7 手动路由的跳转1.7.1 在函数式组件中使用hook1.7.2 在类组件中封装高阶组件 1.8 动态路由传递参数1.9 路由的配置文件以及懒加载 1、Router 1.1 路由 1.…

「Python」Selenium

基本使用 导入&#xff1a;from selenium import webdriver创建浏览器操作对象&#xff1a;browser webdriver.Chrome()访问网站 # 访问网站 url https://www.jd.com browser.get(url)""" selenium基本使用Author&#xff1a;binxin Date&#xff1a;2023/1…

【C语言】常见字符串函数的功能与模拟实现

目录 1.strlen() 模拟实现strlen() 2.strcpy() 模拟实现strcpy() 3.strcat() 模拟实现strcat() 4.strcmp() 模拟实现strcmp() 5.strncpy() 模拟实现strncpy() 6.strncat() 模拟实现strncat() 7.strncmp() 模拟实现strncmp() 8.strstr() 模拟实现strstr() 9.str…

Redis核心技术与实战【学习笔记】 - 29.Redis的未来猜想,基于 NVM内存

前言 这几年&#xff0c;新型非易失存储&#xff08;Non-Volatile Memory&#xff0c;NVM&#xff09;器件发展得非常快。NVM 器件具有容量大、性能快、能持久报错数据的特性&#xff0c;这些刚刚就是 Redis 追求的目标。同时 NVM 器件像 DRAM 一样&#xff0c;可以让软件以字…

几个经典金融理论

完整EA&#xff1a;Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 一、预期效用理论 预期效用理论是描述人们在做出决策时如何考虑风险和不确定性的一种理论。该理论最初由经济学家冯诺伊曼&#xff08;John von Neumann&#xff09;和奥斯卡摩根斯坦恩&#xff08;Oskar…

全栈笔记_工具篇(nvm免安装版配置)

免安装版配置 下载nvm包:选择免安装压缩包nvm-noinstall.zip 解压zip包:将压缩包解压到指定目录,如:C:\nvm 新增环境变量: NVM_HOME:nvm解压之后的文件路径,对应配置文件里的root值NVM_SYMLINK:nvm 文件夹里新建 nodejs文件夹,对应配置文件里的path值 修改环境变量Pat…

跨域问题浅析

什么是源(域) 在W3C的定义中,源是由协议、主机(IP 地址或者域名)和端口三者确定。如果两个 URL 的协议、主机(IP 地址或者域名)和端口都一样的话,那么这两个 URL 就是同源的。 同源策略 由于源与源之间是未知且默认的,所以非本源中的资源(即URL对应的资源)是不可控的…

数解 transformer 之 self attention transformer 公式整理

千万不要从任何角度轻看 transformer&#xff0c;重要的话说四遍&#xff1a; 千万不要从任何角度轻看 transformer 千万不要从任何角度轻看 transformer 千万不要从任何角度轻看 transformer Attention is all you need 整个项目是鬼斧神工之作&#xff0c;巧夺天工之作&a…

Spring 用法学习总结(三)之 AOP

Spring学习 7 bean的生命周期8 AOP面向切面编程8.1 AOP相关术语8.2 AOP使用 7 bean的生命周期 bean的生命周期主要为bean实例化、bean属性赋值、bean初始化、销毁bean&#xff0c;其中在实例化和初始化前后都使用后置处理器方法&#xff0c;而InstantiationAwareBeanPostProce…

2024大健康展,山东省大健康产业博览会,济南营养健康展会

立足济南&#xff0c;面向世界&#xff0c;2024第六届中国国际大健康产业博览会&#xff0c;定档2024年5月27-29日&#xff0c;在济南黄河国际会展中心举办&#xff1b; 2024第6届中国&#xff08;济南&#xff09;国际大健康产业博览会&#xff08;China-DJK山东健博会&#…

控制论与科学方法论

《控制论与科学方法论》&#xff0c;真心不错。 书籍原文电子版PDF&#xff1a;https://pan.quark.cn/s/00aa929e4433&#xff08;分类在学习目录下&#xff09; 备用链接&#xff1a;https://pan.xunlei.com/s/VNgj2vjW-Hf_543R2K8kbaifA1?pwd2sap# 控制论是一种让系统按照我…

CTF-web 之 burp suite 使用

burp suite 使用 一般其是作为一个辅助工具&#xff0c;直接使用来解题的部分是少数&#xff0c;我们可以使用它来观察请 求和响应&#xff0c;并且可以反复的提交&#xff0c;关键的是他还带有很多其他的功能&#xff0c;在我们做题的过程中&#xff0c; 使用的关键点包括&…

MyBatis篇----第六篇

系列文章目录 文章目录 系列文章目录前言一、什么是 MyBatis 的接口绑定?有哪些实现方式?二、使用 MyBatis 的 mapper 接口调用时有哪些要求?三、Mapper 编写有哪几种方式?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳…

OpenGL-ES 学习(1)---- AlphaBlend

AlphaBlend OpenGL-ES 混合本质上是将 2 个片元的颜色进行调和(一般是求和操作)&#xff0c;产生一个新的颜色 OpenGL ES 混合发生在片元通过各项测试之后&#xff0c;准备进入帧缓冲区的片元和原有的片元按照特定比例加权计算出最终片元的颜色值&#xff0c;不再是新&#xf…

面试官:介绍一下MVC框架

前言 大家好&#xff0c;我是chowley&#xff0c;MVC相信大家都听说过&#xff0c;今天我就记录一下我心中的MVC框架 MVC&#xff08;Model-View-Controller&#xff09;是一种软件设计模式&#xff0c;用于将应用程序分为三个核心部分&#xff1a;模型&#xff08;Model&…

书生浦语大模型实战营-课程笔记(2)

介绍了一下InternLm的总体情况。 InternLm是训练框架&#xff0c;Lagent是智能体框架。 这个预训练需要这么多算力&#xff0c;大模型确实花钱。 Lagent是智能体框架&#xff0c;相当于LLM的应用。 pip设置 开发机的配置 pip install transformers4.33.1 timm0.4.12 sente…

计算机二级数据库之数据模型

数据模型 模型的概念 模型的介绍模型是对现实世界特征的模拟和抽象&#xff0c; 数据模型的概念&#xff1a; 数据模型是对现实世界中数据特征的抽象&#xff0c;描述的是数据的共性。 数据模型是用来在数据库中抽象、表示和处理现实世界中的数据和信凹。 其相关的共同特…

vue项目搭建测试

5&#xff0c;项目测试 导入elementplus以及样式 import ElementPlus from element-plus import element-plus/dist/index.csscreateApp(App).use(store).use(router).use(ElementPlus).mount(#app)<template><el-row class"mb-4"><el-button>De…

MATLAB|基于改进二进制粒子群算法的含需求响应机组组合问题研究(含文献和源码)

目录 主要内容 模型研究 1.改进二进制粒子群算法&#xff08;BPSO&#xff09; 2.模型分析 结果一览 下载链接 主要内容 该程序复现《A Modified Binary PSO to solve the Thermal Unit Commitment Problem》&#xff0c;主要做的是一个考虑需求响应的机组组合…