DS Wannabe之5-AM Project: DS 30day int prep day15

Q1. What is Autoencoder? 自编码器是什么?

自编码器是一种特殊类型的神经网络,它通过无监督学习尝试复现其输入数据。它通常包含两部分:编码器和解码器。编码器压缩输入数据成为一个低维度的中间表示,解码器则从这个中间表示重建输出,输出尽可能接近原始输入。自编码器常用于特征学习、降维和去噪。

Autoencoderneural network: It is an unsupervised Machine learning algorithm that applies backpropagation, setting the target values to be equal to the inputs. It is trained to attempt to copy its input to its output. Internally, it has the hidden layer that describes a code used to represent the input.

It is trying to learn the approximation to the identity function, to output x̂ x^ that is similar to the xx. Autoencoders belongs to the neural network family, but they are also closely related to PCA

(principal components analysis).

Auto encoders, although it is quite similar to PCA, but its Autoencoders are much more flexible than PCA. Autoencoders can represent both liners and non-linear transformation in encoding, but PCA can perform linear transformation. Autoencoders can be layered to form deep learning network due to its Network representation.

Autoencoder use cases

  • Dimensionality reduction: Smaller dimensional space representation of our inputs.
  • De-noising data: If trained with clean data, irrelevant noise will be ltered out during reconstruction.
  • Anomaly detection: A poor reconstruction will result when the model is fed with unseen inputs.

Types of Autoencoders:

1. Denoising autoencoder

Autoencoders are Neural Networks which are used for feature selection and extraction. However, when there are more nodes in hidden layer than there are inputs, the Network is risking to learn so-called “Identity Function”, also called “Null Function”, meaning that output equals the input, marking the Autoencoder useless.

2. Sparse autoencoder

An autoencoder takes the input image or vector and learns code dictionary that changes the raw input from one representation to another. Where in sparse autoencoders with a sparsity enforcer that directs a single-layer network to learn code dictionary which in turn minimizes the error in reproducing the input while restricting number of code words for reconstruction. The sparse autoencoder consists a single hidden layer, which is connected to the input vector by a weight matrix forming the encoding step. The hidden layer then outputs to a reconstruction vector, using a tied weight matrix to form the decoder.

Q2. What Is Text Similarity? 文本相似性是什么?

文本相似性是指评估两段文本在内容、语义或结构上的相似度。这可以通过各种算法实现,如余弦相似度、杰卡德相似度或基于词嵌入的方法。文本相似性在信息检索、文档分类和自然语言处理中有广泛的应用。

When talking about text similarity, different people have a slightly different notion on what text similarity means. In essence, the goal is to compute how ‘close’ two pieces of text are in (1) meaning or (2) surface closeness. The first is referred to as semantic similarity, and the latter is referred to as lexical similarity. Although the methods for lexical similarity are often used to achieve semantic similarity (to a certain extent), achieving true semantic similarity is often much more involved.

Lexical or Word Level Similarity

When referring to text similarity, people refer to how similar the two pieces of text are at the surface level. Example- how similar are the phrases “the cat ate the mouse” with “the mouse ate the cat food” by just looking at the words? On the surface, if you consider only word-level similarity, these two phrases (with determiners disregarded) appear very similar as 3 of the 4 unique words are an exact overlap.

Semantic Similarity

Another notion of similarity mostly explored by NLP research community is how similar in meaning are any two phrases? If we look at the phrases, “ the cat ate the mouse ” and “ the mouse ate the cat food”. As we know that while the words significantly overlaps, these two phrases have different meaning. Meaning out of the phrases is often the more difficult task as it requires deeper level of analysis.Example, we can actually look at the simple aspects like order of words: “cat==>ate==>mouse” and “mouse==>ate==>cat food”. Words overlap in this case, the order of the occurrence is different, and we can tell that, these two phrases have different meaning. This is just the one example. Most people use the syntactic parsing to help with the semantic similarity. Let’s have a look at the parse trees for these two phrases. What can you get from it?

Q3. What is dropout in neural networks? 神经网络中的Dropout是什么?

Dropout是一种正则化技术,用于防止神经网络的过拟合。在训练过程中,Dropout会随机地丢弃(即,暂时移除)网络中的一些神经元及其连接,这迫使网络以更健壮的方式学习特征,因为它不能依赖于任何单一的输入特征。

When we training our neural network (or model) by updating each of its weights, it might become too dependent on the dataset we are using. Therefore, when this model has to make a prediction or classification, it will not give satisfactory results. This is known as over-fitting. We might understand this problem through a real-world example: If a student of science learns only one chapter of a book and then takes a test on the whole syllabus, he will probably fail.

To overcome this problem, we use a technique that was introduced by Geoffrey Hinton in 2012. This technique is known as dropout.

Dropout refers to ignoring units (i.e., neurons) during the training phase of certain set of neurons, which is chosen at random. By “ignoring”, I mean these units are not considered during a particular forward or backward pass.

At each training stage, individual nodes are either dropped out of the net with probability 1-p or kept with probability p, so that a reduced network is left; incoming and outgoing edges to a dropped-out node are also removed.

Q4. What is Forward Propagation? 什么是前向传播?

前向传播是神经网络中的一个过程,其中输入数据在网络的各层之间传递,从输入层开始,经过隐藏层,最终到输出层产生预测。在这个过程中,每一层的输出将成为下一层的输入,直到最终产生输出。Input X provides the information that then propagates to hidden units at each layer and then finally produce the output y. The architecture of network entails determining its depth, width, and the activation functions used on each layer. Depth is the number of the hidden layers. Width is the number of units (nodes) on each hidden layer since we don’t control neither input layer nor output layer dimensions. There are quite a few set of activation functions such Rectified Linear Unit, Sigmoid, Hyperbolic tangent, etc. Research has proven that deeper networks outperform networks with more hidden units. Therefore, it’s always better and won’t hurt to train a deeper network.

Q5. What is Text Mining? 什么是文本挖掘?

文本挖掘是指从文本数据中提取有价值信息的过程。它涉及到信息检索、词性标注、情感分析、主题识别等多种技术。文本挖掘使我们能够从大规模的文本数据集中发现模式、趋势和关联,常用于社交媒体分析、市场情报、客户服务等领域。

Text mining: It is also referred as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interest. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities).

Q6. What is Information Extraction?

信息提取是自然语言处理的一个分支,它的目标是从非结构化文本数据中自动提取结构化信息。这包括提取实体(如人名、地点、组织名)、关系(如员工-公司关系)、事件(如交易或投资)和其他特定于领域的信息。

Information extraction (IE): It is the task of automatically extracting structured information from the unstructured and/or semi-structured machine-readable documents. In most of the cases, this activity concerns processing human language texts using natural language processing (NLP).

Information extraction depends on named entity recognition (NER), a sub-tool used to find targeted information to extract. NER recognizes entities first as one of several categories, such as location (LOC), persons (PER), or organizations (ORG). Once the information category is recognized, an information extraction utility extracts the named entity’s related information and constructs a machine-readable document from it, which algorithms can further process to extract meaning. IE finds meaning by way of other subtasks, including co-reference resolution, relationship extraction, language, and vocabulary analysis, and sometimes audio extraction.

Q7. What is Text Generation?

文本生成是指使用自然语言处理技术自动生成人类可读的文本。这可以包括基于规则的方法或使用机器学习模型,如神经网络,来生成新颖的文本内容,如新闻文章、故事、代码或诗歌。

Text Generation: It is a type of the Language Modelling problem. Language Modelling is the core problem for several of natural language processing tasks such as speech to text, conversational system, and the text summarization. The trained language model learns the likelihood of occurrence of the word based on the previous sequence of words used in the text. Language models can be operated at the character level, n-gram level, sentence level or even paragraph level.

A language model is at the core of many NLP tasks, and is simply a probability distribution over a sequence of words:

It can also be used to estimate the conditional probability of the next word in a sequence:

Q8. What is Text Summarization?

文本摘要是将长文本简化为较短版本的过程,同时保留关键信息和文本的主要意图。文本摘要可以是抽取式的,即直接从原文中选取片段;也可以是归纳式的,即重新表述原文以产生更简洁的版本

We all interact with the applications which uses the text summarization. Many of the applications are for the platform which publishes articles on the daily news, entertainment, sports. With our busy schedule, we like to read the summary of those articles before we decide to jump in for reading entire article. Reading a summary helps us to identify the interest area, gives a brief context of the story.

Text summarization is a subdomain of Natural Language Processing (NLP) that deals with extracting summaries from huge chunks of texts. There are two main types of techniques used for text summarization: NLP-based techniques and deep learning-based techniques.

Text summarization: It refers to the technique of shortening long pieces of text. The intention is to create the coherent and fluent summary having only the main points outlined in the document.

How text summarization works:

The two types of summarization, abstractive and the extractive summarization.

1. AbstractiveSummarization:Itselectwordsbasedonthesemanticunderstanding;eventhose words did not appear in the source documents. It aims at producing important material in the new way. They interprets and examines the text using advanced natural language techniques to generate the new shorter text that conveys the most critical information from the original text.

It can be correlated in the way human reads the text article or blog post and then summarizes in their word.

2. Extractive Summarization: It attempt to summarize articles by selecting the subset of words that retain the most important points.

This approach weights the most important part of sentences and uses the same to form the summary. Different algorithm and the techniques are used to define the weights for the sentences and further rank them based on importance and similarity among each other.

Q9. What is Topic Modelling?

主题建模是一种自然语言处理技术,用于发现大量文档集中隐藏的主题结构。常用方法包括潜在语义分析(LSA)和潜在狄利克雷分配(LDA)。这些方法可以帮助组织和理解大型文本集合中的主题和概念。

Topic Modelling is the task of using unsupervised learning to extract the main topics (represented as a set of words) that occur in a collection of documents.
Topic modeling, in the context of Natural Language Processing, is described as a method of uncovering hidden structure in a collection of texts.

Dimensionality Reduction:

Topic modeling is the form of dimensionality reduction. Rather than representing the text T in its feature space as {Word_i: count(Word_i, T) for Word_i in V}, we can represent the text in its topic space as ( Topic_i: weight(Topic_i, T) for Topic_i in Topics ).
Unsupervised learning:

Topic modeling can be compared to the clustering. As in the case of clustering, the number of topics, like the number of clusters, is the hyperparameter. By doing the topic modeling, we build clusters of words rather than clusters of texts. A text is thus a mixture of all the topics, each having a certain weight.

A Form of Tagging

If document classification is assigning a single category to a text, topic modeling is assigning multiple tags to a text. A human expert can label the resulting topics with human-readable labels and use different heuristics to convert the weighted topics to a set of tags.

Q10.What is Hidden Markov Models?

隐马尔可夫模型(HMM)是一种统计模型,用于描述具有隐藏状态的马尔可夫过程。在自然语言处理中,HMM常用于词性标注、语音识别和其他任务,其中需要推断出最可能的隐藏状态序列(如句子中单词的词性)。

Why Hidden, Markov Model?

The reason it is called the Hidden Markov Model is because we are constructing an inference model based on the assumptions of a Markov process. The Markov process assumption is simply that the “future is independent of the past given the present”.

To make this point clear, let us consider the scenario below where the weather, the hidden variable, can be hot, mild or cold, and the observed variables are the type of clothing worn. The arrows represent transitions from a hidden state to another hidden state or from a hidden state to an observed variable.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682975.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库被人破解,删除数据,勒索

事情是这样的,我买了一台服务器自己部署项目玩儿玩儿,我的数据库运行在3306端口,密码没改,就是默认的123456,诡异的事情发生了,用了一段时间之后,数据库突然连接不上了,我一通操作猛…

Python爬虫——解析库安装(1)

目录 1.lxml安装2.Beautiful Soup安装3.pyquery 的安装 我创建了一个社区,欢迎大家一起学习交流。社区名称:Spider学习交流 注:该系列教程已经默认用户安装了Pycharm和Anaconda,未安装的可以参考我之前的博客有将如何安装。同时默…

【开源】SpringBoot框架开发企业项目合同信息系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 合同审批模块2.3 合同签订模块2.4 合同预警模块2.5 数据可视化模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 合同审批表3.2.2 合同签订表3.2.3 合同预警表 四、系统展示五、核心代码5.1 查询合同…

Linux多线程[二]

引入知识 进程在线程内部执行是OS的系统调度单位。 内核中针对地址空间,有一种特殊的结构,VM_area_struct。这个用来控制虚拟内存中每个malloc等申请的空间,来区别每个malloc的是对应的堆区哪一段。OS可以做到资源的精细度划分。 对于磁盘…

嵌入式软件设计入门:从零开始学习嵌入式软件设计

(本文为简单介绍,个人观点仅供参考) 首先,让我们了解一下嵌入式软件的定义。嵌入式软件是指运行在嵌入式系统中的特定用途软件,它通常被用来控制硬件设备、处理实时数据和实现特定功能。与桌面应用程序相比,嵌入式软件需要具备更高的实时性、…

反无人机系统技术分析,无人机反制技术理论基础,无人机技术详解

近年来,经过大疆、parrot、3d robotics等公司不断的努力,具有强大功能的消费级无人机价格不断降低,操作简便性不断提高,无人机正快速地从尖端的军用设备转入大众市场,成为普通民众手中的玩具。 然而,随着消…

Python算法题集_翻转二叉树

Python算法题集_翻转二叉树 题226:翻转二叉树1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS递归】2) 改进版一【BFS迭代,节点循环】3) 改进版二【BFS迭代,列表循环】 4. 最优算法 本文为Python算法题集…

Spring Boot 笔记 019 创建接口_文件上传

1.1 创建阿里OSS bucket OSS Java SDK 兼容性和示例代码_对象存储(OSS)-阿里云帮助中心 (aliyun.com) 1.2 编写工具类 package com.geji.utils;import com.aliyun.oss.ClientException; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.aliyun…

加速创新如何先从创意管理开始?

文章详细介绍了什么是创意管理以及它在组织中的重要性和最佳实践。创意管理是指在组织内捕捉、组织、评估和实施创意的过程。它通过建立一个结构化的系统,从员工、客户或其他利益相关者那里收集创意,并系统地审查和选择最有前景的创意进行进一步的开发或…

算法学习——LeetCode力扣回溯篇3

算法学习——LeetCode力扣回溯篇3 491. 非递减子序列 491. 非递减子序列 - 力扣(LeetCode) 描述 给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。…

2024龙年特别篇 -- 魔法指针 之 指针变量的意义 指针运算

学习完指针变量:链接后, 我们继续学习指针变量的应用 目录 程序展示 原始方式 指针变量方式 代码对比 指针运算 指针-整数 用指针打印数组内容 使用指针打印1-10中的奇数 指针-指针 指针的关系运算 程序展示 打印一个有10个元素的数组&am…

语言与科技创新(大语言模型对科技创新的影响)

1.科技创新中的语言因素 科技创新中的语言因素至关重要,具体体现在以下几个方面: 科技文献交流: 英语作为全球科学研究的通用语言,极大地推动了科技成果的国际传播与合作。科学家们在发表论文、报告研究成果时,大多选…

ChatGPT高效提问—prompt实践(教师助手)

ChatGPT高效提问—prompt实践(教师助手) 下面来看看ChatGPT在教育领域有什么用途。 首先设定ChatGPT的角色为高中教师助手。 输入prompt: ChatGPT输出: ​ 教师助手的角色已经设置完成。下面通过几种不同的情景演示如何使用。 1.1.1 制定…

2001-2022年368个地级市平均气温数据

2001-2022年368个地级市平均气温数据 1、时间:2001-2022年 2、范围:368个地级市 3、来源:基于NOAA下属NCEI提供的原始数据编制而成的。 4、指标:年份、省份、省份代码、城市、城市代码、平均气温 5、指标解释:平均气温指某一…

【JavaEE】_JavaScript(Web API)

目录 1. DOM 1.1 DOM基本概念 1.2 DOM树 2. 选中页面元素 2.1 querySelector 2.2 querySelectorAll 3. 事件 3.1 基本概念 3.2 事件的三要素 3.3 示例 4.操作元素 4.1 获取/修改元素内容 4.2 获取/修改元素属性 4.3 获取/修改表单元素属性 4.3.1 value&#xf…

机器学习、深度学习、强化学习、迁移学习的关联与区别

Hi,大家好,我是半亩花海。本文主要了解并初步探究机器学习、深度学习、强化学习、迁移学习的关系与区别,通过清晰直观的关系图展现出四种“学习”之间的关系。虽然这四种“学习”方法在理论和应用上存在着一定的区别,但它们之间也…

FreeRTOS 队列管理

概览 基于 FreeRTOS 的应用程序由一组独立的任务构成——每个任务都是具有独立权 限的小程序。这些独立的任务之间很可能会通过相互通信以提供有用的系统功能。 FreeRTOS 中所有的通信与同步机制都是基于队列实现的。 本章期望让读者了解以下事情   如何创建一个队列   …

有限合伙协议书(模板)下

第六章 合伙事务的执行 第十七条 有限合伙人不执行合伙事务,对外不具有代表权。有限合伙企业由普通合伙人执行合伙事务。 第十八条 经全体合伙人一致同意可以委托一个普通合伙人(也可以委托数个普通合伙人)对外代表合伙企业,执…

算法学习——LeetCode力扣回溯篇1

算法学习——LeetCode力扣回溯篇1 77. 组合 77. 组合 - 力扣(LeetCode) 描述 任何顺序 返回答案。 示例 示例 1: 输入:n 4, k 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] 示例 2: 输…

【机器学习案例4】为机器学习算法编码分类数据【含源码】

目录 编码分类数据 序数编码 标签编码 一次性编码 目标编码 目标编码的优点 目标编码的缺点 在现实生活中,收集的原始数据很少采用我们可以直接用于机器学习模型的格式,即数值型数据。因此,需要进行一些预处理,以便以正确的格式呈现数据、选择信息丰富的数据或降低其…