冒泡排序平均需要跑多少趟:拉马努金Q函数初探

摘要: 拉马努金Q函数在算法分析中的应用,初步体验

【对算法,数学,计算机感兴趣的同学,欢迎关注我哈,原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:算法题刷刷
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings


各位好,本文我们继续来讨论算法分析中的问题。

很多数组上的算法都与 1 ∼ n 1 \sim n 1n 的排列有关,比如各种排序算法。在分析数组上的排序算法时,排列上的各种概念对分析问题很有用,比如逆序、圈、左向右最大值、上升、下降、游程、峰、谷等等。

本文我们看一下逆序的概念及其在冒泡排序的分析中的作用。然后我们解决一个相关的算法分析问题:对于 1 ∼ N 1 \sim N 1N 的随机排列, N → ∞ N \rightarrow\infty N 时,冒泡排序平均要跑多少趟。

首先给出结论, N → ∞ N \rightarrow\infty N 时,冒泡排序平均扫描趟数为 N − π N 2 + O ( 1 ) N - \sqrt{\frac{\pi N}{2}} + O(1) N2πN +O(1)

为了推导以上结论,我们首先介绍一下排列中关于逆序、逆序数、逆序表的概念。然后介绍一下冒泡排序算法的流程,然后根据逆序表的概念以及冒泡排序的流程,我们将冒泡排序平均扫描趟数问题转化为逆序表的最大值的问题。

之后我们在逆序表上经过一些组合分析,再结合数学期望的性质,将问题的答案写成了一个和式。于是原问题最终转化为了一个和式的渐近估阶的问题。

然后引用拉马努金Q函数相关的结论,对原和式化简,使得我们可以比较容易地对简化后的和式进行渐近估阶,得到最终结果。

排列的一些基本概念

p = p 1 p 2 ⋅ ⋅ ⋅ p N p = p_{1}p_{2}\cdot\cdot\cdot p_{N} p=p1p2pN 1 ∼ N 1 \sim N 1N 的一个排列。

逆序:一个逆序 i < j i < j i<j p i > p j p_{i} > p_{j} pi>pj 的一个数对。

逆序表:记 q j q_{j} qj 表示 i ∈ [ 1.. j − 1 ] i \in [1..j-1] i[1..j1] p i > p j p_{i} > p_{j} pi>pj 的个数。 q = q 1 q 2 ⋅ ⋅ ⋅ q N q = q_{1}q_{2}\cdot\cdot\cdot q_{N} q=q1q2qN 成为排列 p p p逆序表

逆序数:记 σ ( p ) = ∑ j = 1 N q j \sigma(p) = \sum\limits_{j=1}\limits^{N}q_{j} σ(p)=j=1Nqj,表示排列 p p p逆序数

排列与逆序表的一一对应

由以上定义可以知道,对于 1 ≤ j ≤ N 1 \leq j \leq N 1jN q j q_{j} qj 需要满足约束 0 ≤ q j < j 0 \leq q_{j} < j 0qj<j

给定满足该约束的任意一个序列 q = q 1 q 2 ⋅ ⋅ ⋅ q N q = q_{1}q_{2}\cdot\cdot\cdot q_{N} q=q1q2qN,下面我们构造满足该逆序表 q q q 的排列 p p p

对于 i = N , N − 1 , ⋯ , 1 i = N, N-1, \cdots, 1 i=N,N1,,1,置 p i p_{i} pi 为未曾用过的数中第 q i q_{i} qi 大的数,即可从右到左构造 p = p 1 p 2 ⋅ ⋅ ⋅ p N p = p_{1}p_{2}\cdot\cdot\cdot p_{N} p=p1p2pN

也就是说给定任意长为 N N N 的逆序表,至少可以构造出一个满足该逆序表的 1 ∼ N 1 \sim N 1N 的排列,下面我们说明该排列是唯一的。

由于 q i q_{i} qi 的取值范围 [ 0.. i − 1 ] [0..i-1] [0..i1] i i i 种可能,因此共有 N ! N! N! 种可能的逆序表 q = q 1 q 2 ⋅ ⋅ ⋅ q N q = q_{1}q_{2}\cdot\cdot\cdot q_{N} q=q1q2qN

另一方面我们熟知 1 ∼ N 1 \sim N 1N 的排列数为 N ! N! N!,如果在 N ! N! N! 个长为 N N N 的逆序表中,存在某个逆序表,其对应的排列不唯一,由鸽巢原理,就会出现某个 1 ∼ N 1 \sim N 1N 的排列对应两个不同的逆序表的情况,这与逆序表的定义矛盾。

因此长度为 N N N 的排列与逆序表之间存在一一对应关系。这对于我们分析冒泡排序非常有用。

冒泡排序算法

要对一个数组 p p p 排序,可以重复扫描这个数组。在一趟扫描过程中,假设扫描到 p [ i ] p[i] p[i] 时,如果 p [ i ] > p [ i + 1 ] p[i] > p[i + 1] p[i]>p[i+1],则将 p [ i ] p[i] p[i] p [ i + 1 ] p[i+1] p[i+1] 交换,然后扫描下一个。否则直接扫描下一个。

如果在某趟扫描完成时,没有进行过任何交换,也就是每个元素都不比它后面的元素大,则排序就完成了。

由于每个交换都是两个相邻元素的交换,因此交换之后,逆序数减 1,这样总的交换次数恰好是一个排列中的逆序数。

另一方面,通过画图分析我们可以发现,一趟扫描完成后,逆序表中每个非零项的值都会减 1。当逆序表中所有项均为零时,程序结束。

这就隐含了:对一个排列的冒泡排序所需的趟数就等于逆序表中的最大元素。于是冒泡排序平均要跑多少趟,就等同于问:在 N ! N! N! 种可能的长为 N N N 的逆序表 q = q 1 q 2 ⋅ ⋅ ⋅ q N q = q_{1}q_{2}\cdot\cdot\cdot q_{N} q=q1q2qN 中,最大值 max ⁡ 1 ≤ j ≤ N q j \max\limits_{1\leq j \leq N} q_{j} 1jNmaxqj 的平均值是多少。

逆序表中的最大值

对于 1 ∼ N 1 \sim N 1N 的排列,给定 0 ≤ k ≤ N 0 \leq k \leq N 0kN,考察所有项都小于 k k k 的逆序表的个数。

考察 q i q_{i} qi。如果 i ≤ k i \leq k ik q i q_{i} qi 可以取 [ 0.. i − 1 ] [0..i-1] [0..i1] 的任意值。当 i > k i > k i>k 时, q i q_{i} qi 可以取 [ 0.. k − 1 ] [0..k-1] [0..k1] 之间的值。

于是 N ! N! N! 种长为 N N N 的逆序表中,所有项都小于 k k k,也就是最大项小于 k k k 的逆序表的个数为 k ! k N − k k!k^{N-k} k!kNk

因此 N ! N! N! 个长为 N 的逆序表中,最大项大于等于 k k k 的概率为 1 − k ! k N − k N ! 1 - \frac{k!k^{N-k}}{N!} 1N!k!kNk

Q Q Q 为随机的长为 N N N 的逆序表中的最大值,于是我们已经得到 P ( Q ≥ k ) = 1 − k ! k N − k N ! P(Q \geq k) = 1 - \frac{k!k^{N-k}}{N!} P(Qk)=1N!k!kNk

下面我们要求 E [ Q ] E[Q] E[Q]。这需要用到通过累积分布函数求数学期望的性质。

由累计分布函数求数学期望

我们知道,根据定义计算数学期望的一般方法如下。

X X X 为离散型,分布律为 P ( X = x ) P(X=x) P(X=x)

E [ X ] = ∑ x x P ( X = x ) E[X] = \sum\limits_{x}xP(X=x) E[X]=xxP(X=x)

X X X 为连续型,概率密度函数为 f ( x ) f(x) f(x)

E [ X ] = ∫ x f ( x ) d x E[X] = \int xf(x)\mathrm{d}x E[X]=xf(x)dx

但如果随机变量 X X X 非负,还可以有不经过分布律或概率密度函数的算法。

如果非负 X X X 为离散型,且已知 P ( X ≥ n ) P(X \geq n) P(Xn),那么有:

E [ X ] = ∑ n = 0 ∞ P ( X ≥ n ) E[X] = \sum\limits_{n=0}\limits^{\infty}P(X\geq n) E[X]=n=0P(Xn)

证明

E [ X ] = ∑ x = 0 ∞ x P ( X = x ) = ∑ x = 0 ∞ ∑ n = 0 x P ( X = x ) = ∑ n = 0 ∞ ∑ x = n ∞ P ( X = x ) = ∑ n = 0 ∞ P ( X ≥ x ) \begin{aligned} E[X] &= \sum\limits_{x=0}\limits^{\infty}xP(X=x) \\ &= \sum\limits_{x=0}\limits^{\infty}\sum\limits_{n=0}\limits^{x}P(X=x) \\ &= \sum\limits_{n=0}\limits^{\infty}\sum\limits_{x=n}\limits^{\infty}P(X=x) \\ &= \sum\limits_{n=0}\limits^{\infty}P(X\geq x) \\ \end{aligned} E[X]=x=0xP(X=x)=x=0n=0xP(X=x)=n=0x=nP(X=x)=n=0P(Xx)

□ \Box

类似地,如果非负 X X X 为连续型,且其累积分布函数为 F ( x ) F(x) F(x),那么有:

E [ X ] = ∫ 0 ∞ ( 1 − F ( x ) ) d x E[X] = \int_{0}^{\infty}(1 - F(x))\mathrm{d}x E[X]=0(1F(x))dx

证明

E [ X ] = ∫ 0 ∞ y f ( y ) d y = ∫ 0 ∞ ∫ 0 y f ( y ) d x d y = ∫ 0 ∞ ∫ x ∞ f ( y ) d y d x = ∫ 0 ∞ ( 1 − F ( x ) ) d x \begin{aligned} E[X] &= \int_{0}^{\infty}yf(y)\mathrm{d}y \\ &= \int_{0}^{\infty}\int_{0}^{y}f(y)\mathrm{d}x\mathrm{d}y \\ &= \int_{0}^{\infty}\int_{x}^{\infty}f(y)\mathrm{d}y\mathrm{d}x \\ &= \int_{0}^{\infty}(1 - F(x))\mathrm{d}x \\ \end{aligned} E[X]=0yf(y)dy=00yf(y)dxdy=0xf(y)dydx=0(1F(x))dx

□ \Box

问题规约:拉马努金Q函数

根据前面对逆序表的分析,以及上述数学期望的性质,长为 N N N 的逆序表的最大值的期望如下:

∑ k = 0 N ( 1 − k ! k N − k N ! ) = N + 1 − ∑ k = 0 N k ! k N − k N ! \sum\limits_{k=0}\limits^{N}(1 - \frac{k!k^{N-k}}{N!}) = N + 1 - \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} k=0N(1N!k!kNk)=N+1k=0NN!k!kNk

于是最初的问题最终归结到了对 ∑ k = 0 N k ! k N − k N ! \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} k=0NN!k!kNk 的渐近估阶。

对以上和式做下标变换:

∑ k = 0 N k ! k N − k N ! = ∑ k = 0 N ( N − k ) ! ( N − k ) k N ! \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} = \sum\limits_{k=0}\limits^{N}\frac{(N-k)!(N-k)^{k}}{N!} \\ k=0NN!k!kNk=k=0NN!(Nk)!(Nk)k

f N ( k ) = ( N − k ) ! ( N − k ) k N ! f_{N}(k) = \frac{(N-k)!(N-k)^{k}}{N!} fN(k)=N!(Nk)!(Nk)k,下面推导 f N ( k ) f_{N}(k) fN(k)

f N ( k ) = ( N − k ) ! ( N − k ) k N ! = N − k N ⋅ N − k N − 1 ⋅ ⋅ ⋅ N − k N − k + 1 = ( 1 − k N ) ⋅ ( 1 − k − 1 N − 1 ) ⋅ ⋅ ⋅ ( 1 − 1 N − k + 1 ) = ∏ i = 1 k ( 1 − i N − k + i ) \begin{aligned} f_{N}(k) &= \frac{(N-k)!(N-k)^{k}}{N!} \\ &= \frac{N-k}{N}\cdot \frac{N-k}{N-1} \cdot\cdot\cdot \frac{N-k}{N-k+1} \\ &= (1 - \frac{k}{N})\cdot (1 - \frac{k-1}{N-1}) \cdot\cdot\cdot (1 - \frac{1}{N-k+1}) \\ &= \prod\limits_{i=1}\limits^{k}(1 - \frac{i}{N-k+i}) \\ \end{aligned} fN(k)=N!(Nk)!(Nk)k=NNkN1NkNk+1Nk=(1Nk)(1N1k1)(1Nk+11)=i=1k(1Nk+ii)

后续的处理非常复杂,需要对 k 较小和 k 很大的情况分别讨论,比较冗长,其完整推导过程与拉马努金 Q 函数的推导过程类似,这里直接引用结论,如下:

∑ k = 0 N k ! k N − k N ! = ∑ k = 0 N f N ( k ) = ∑ k = 0 N e − k 2 2 N + O ( 1 ) N → ∞ \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} = \sum\limits_{k=0}\limits^{N}f_{N}(k) = \sum\limits_{k=0}\limits^{N}e^{-\frac{k^{2}}{2N}} + O(1) \quad\quad N\rightarrow\infty k=0NN!k!kNk=k=0NfN(k)=k=0Ne2Nk2+O(1)N

以后有时间可以再回来看一下上式的推导过程,感兴趣的可以看《算法分析导论》或《计算机程序设计艺术》中关于拉马努金Q函数的内容。

积分逼近求和

下面对 ∑ k = 0 ∞ e − k 2 2 N \sum\limits_{k=0}\limits^{\infty}e^{-\frac{k^{2}}{2N}} k=0e2Nk2 进行估阶。记 h ( x ) = e − x 2 2 N h(x) = e^{-\frac{x^{2}}{2N}} h(x)=e2Nx2。可以用积分逼近求和:

∑ k = 0 ∞ e − k 2 2 N = ∫ 0 ∞ e − x 2 2 N d x + Δ = 2 N ∫ 0 ∞ e − ( x 2 N ) 2 d x 2 N + Δ = 2 N ∫ 0 ∞ e − t 2 d t + Δ = 2 N π 2 + Δ \begin{aligned} \sum\limits_{k=0}\limits^{\infty}e^{-\frac{k^{2}}{2N}} &= \int_{0}^{\infty}e^{-\frac{x^{2}}{2N}}\mathrm{d}x + \Delta \\ &= \sqrt{2N}\int_{0}^{\infty}e^{-(\frac{x}{\sqrt{2N}})^{2}}\mathrm{d}\frac{x}{\sqrt{2N}} + \Delta \\ &= \sqrt{2N}\int_{0}^{\infty}e^{-t^{2}}\mathrm{d}t + \Delta \\ &= \sqrt{2N}\frac{\sqrt{\pi}}{2} + \Delta \\ \end{aligned} k=0e2Nk2=0e2Nx2dx+Δ=2N 0e(2N x)2d2N x+Δ=2N 0et2dt+Δ=2N 2π +Δ

由于 h ( x ) h(x) h(x) x ≥ 0 x \geq 0 x0 上是单调递减函数, Δ ≤ ∣ h ( 0 ) − h ( ∞ ) ∣ = 1 \Delta \leq |h(0) - h(\infty)| = 1 Δh(0)h()=1,于是有:

∑ k = 0 ∞ e − k 2 2 N = π N 2 + O ( 1 ) \sum\limits_{k=0}\limits^{\infty}e^{-\frac{k^{2}}{2N}} = \sqrt{\frac{\pi N}{2}} + O(1) k=0e2Nk2=2πN +O(1)

上式通过欧拉-麦克劳林公式也可以导出,但由于 h ( x ) h(x) h(x) 的单调性,直接用积分逼近求和更简单一些。最终结果为:

N + 1 − ∑ k = 0 N k ! k N − k N ! = N − π N 2 + O ( 1 ) N → ∞ N + 1 - \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} = N - \sqrt{\frac{\pi N}{2}} + O(1) \quad\quad N\rightarrow\infty N+1k=0NN!k!kNk=N2πN +O(1)N

也就是, N → ∞ N \rightarrow\infty N 时,冒泡排序平均扫描趟数为 N − π N 2 + O ( 1 ) N - \sqrt{\frac{\pi N}{2}} + O(1) N2πN +O(1)

总结

本文我们讨论了排序算法的分析中的一个问题:冒泡排序平均需要跑多少趟。

首先引入了排列中的一些概念定义,包括逆序、逆序表,然后基于冒泡排序的算法流程,发现冒泡排序扫描的趟数就是逆序表中的最大值。

再结合排列的逆序表自身的性质,以及通过累积分布函数求数学期望的性质,最终我们将问题归结到了 ∑ k = 0 N k ! k N − k N ! \sum\limits_{k=0}\limits^{N}\frac{k!k^{N-k}}{N!} k=0NN!k!kNk 的渐近估阶。

上式的渐近估阶非常麻烦冗长,我们参考了《计算机程序设计艺术》、《算法分析导论》等名著中关于拉马努金Q函数的相关论述,直接引用结果,将问题转化为 ∑ k = 0 ∞ e − k 2 2 N \sum\limits_{k=0}\limits^{\infty}e^{-\frac{k^{2}}{2N}} k=0e2Nk2 的进行估阶。而后者通过积分逼近求和的方式或者欧拉-麦克劳林公式你可以方便解决。

最终我们得出结论, N → ∞ N \rightarrow\infty N 时,冒泡排序平均扫描趟数为 N − π N 2 + O ( 1 ) N - \sqrt{\frac{\pi N}{2}} + O(1) N2πN +O(1)。通过这个例子我们看到,使用拉马努金 Q 函数可以将某些难解的和式简化。

算法分析中使用拉马努金 Q 函数的例子非常多,关于拉马努金 Q 函数的前因后果,以及更多的应用,后续再跟大家探讨。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682868.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

100条经典C语言题第一天(1-10)

准备复习一下C语言&#xff0c;刷一些和面试相关的问题。 请填写 bool, float, 指针变量 与 “零值”比较的if语句 A.Bool flag 与 “零值”比较的if语句 1为true 0为false 分析 这里的flag 是布尔类型的变量 标准…

YOLOv5改进 | 一文汇总:如何在网络结构中添加注意力机制、C3、卷积、Neck、SPPF、检测头

一、本文介绍 本篇文章的内容是在大家得到一个改进版本的C3一个新的注意力机制、或者一个新的卷积模块、或者是检测头的时候如何替换我们YOLOv5模型中的原有的模块,从而用你的模块去进行训练模型或者检测。因为最近开了一个专栏里面涉及到挺多改进的地方,不能每篇文章都去讲…

linux内核原理--用户态线性地址空间,mmap,malloc,缺页异常

1.概述 前面我们介绍了内核态线性地址空间划分&#xff0c;及在内核态运行时&#xff0c;如何利用伙伴系统完成连续可用物理页框申请和释放。如何利用小块内存分配器实现高效的动态内存分配和释放。如何利用vmalloc&#xff0c;vfree完成线性地址连续但物理地址不连续的多个页框…

什么是 Flet?

什么是 Flet&#xff1f; Flet 是一个框架&#xff0c;允许使用您喜欢的语言构建交互式多用户 Web、桌面和移动应用程序&#xff0c;而无需前端开发经验。 您可以使用基于 Google 的 Flutter 的 Flet 控件为程序构建 UI。Flet 不只是“包装”Flutter 小部件&#xff0c;而是…

Socket.D 开源输传协议的集群转发特性

1、简介 Socket.D 是基于"事件"和"语义消息""流"的网络应用层协议。底层可以依赖 TCP、UDP、KCP、WebSocket 等传输层协议。其开发背后的动机是用开销更少的协议取代超文本传输协议(HTTP)&#xff0c;HTTP 协议对于许多任务(如微服务通信)来说效…

paddlepaddle 2.6版本在WSL2环境中如何使用NVIDIA显卡运行神经网络

paddlepaddle 2.6版本发布后&#xff0c;官网上可以使用NVIDIA cuda 12.x进行机器学习了&#xff0c;训练神经网络的效率大为提升。因为是在wsl2环境中安装&#xff0c;不是纯正的linux环境&#xff0c;其中一些小问题需要注意。 使用conda 安装飞浆&#xff0c;wsl2中安装了c…

上位机图像处理和嵌入式模块部署(上位机主要功能)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 目前关于机器视觉方面&#xff0c;相关的软件很多。比如说商业化的halcon、vision pro、vision master&#xff0c;当然也可以用opencv、pytorch自…

使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询

在我之前的文章 “Elasticsearch&#xff1a;与多个 PDF 聊天 | LangChain Python 应用教程&#xff08;免费 LLMs 和嵌入&#xff09;” 里&#xff0c;我详述如何使用 Streamlit&#xff0c;Langchain, Elasticsearch 及 OpenAI 来针对 PDF 进行聊天。在今天的文章中&#xf…

ArrayList 与 LinkedList 区别

serialVersionUID 有什么作用&#xff1f; serialVersionUID 是 Java 序列化机制中的一个重要概念&#xff0c;它用于确保反序列化对象与序列化对象保持兼容。当一个类实现 java.io.Serializable 接口时&#xff0c;可以通过定义一个名为 serialVersionUID 的静态常量来指定该…

[缓存] - 2.分布式缓存重磅中间件 Redis

1. 高性能 尽量使用短key 不要存过大的数据 避免使用keys *&#xff1a;使用SCAN,来代替 在存到Redis之前压缩数据 设置 key 有效期 选择回收策略(maxmemory-policy) 减少不必要的连接 限制redis的内存大小&#xff08;防止swap&#xff0c;OOM&#xff09; slowLog …

Swift Combine 网络受限时从备用 URL 请求数据 从入门到精通十四

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

数据结构.图的存储

一、邻接矩阵法 二、邻列表法 三、十字链表法

python Flask与微信小程序 统计管理

common/models/stat/StatDailyMember.py DROP TABLE IF EXISTS stat_daily_member;CREATE TABLE stat_daily_member (id int(11) unsigned NOT NULL AUTO_INCREMENT,date date NOT NULL COMMENT 日期,member_id int(11) NOT NULL DEFAULT 0 COMMENT 会员id,total_shared_count …

例39:使用List控件

建立一个EXE工程&#xff0c;在窗体上放一个文本框&#xff0c;一个列表框和三个按钮输入如下的代码&#xff1a; Sub Form1_Command1_BN_Clicked(hWndForm As hWnd, hWndControl As hWnd)List1.AddItem(Text1.Text)End SubSub Form1_Command2_BN_Clicked(hWndForm As hWnd, h…

【python之美】减少人工成本之批量拿取文件名保存_4

获取文件名保存 准备工作: 上代码: import ospath "C:\\Users\\Administrator\\Desktop\\text\\" file_names os.listdir(path) print(file_names)i 1 for file_name in file_names:name file_name.split(_)[0]print(name)new_name name "_修改后第&qu…

【zabbix】(四)-钉钉告警企业微信配置

前提条件&#xff1a; 已经安装了Python3环境&#xff08;脚本需要requests模块&#xff09;。Centos7.x自带Python2&#xff08;不含requests模块&#xff09; 钉钉告警配置 一 安装Python3 参考该优秀文档部署 查看Python的模块&#xff1a;pip list / pip3 list 报错 …

一周学会Django5 Python Web开发-项目配置settings.py文件-基本配置

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计17条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

Linux第54步_根文件系统第1步_编译busybox并安装_然后添加“根文件系统”的库

学习编译busybox&#xff0c;并安装&#xff0c;然后添加“根文件系统”的库。有人说busybox构建根文件系统&#xff0c;只适合学习&#xff0c;不适合做项目。 1、了解ubuntu的根文件系统 根文件系统的目录名为“/”&#xff0c;就是一个斜杠。 1)、输入“cd /回车”&…

Python爬虫之自动化测试Selenium#7

爬虫专栏&#xff1a;http://t.csdnimg.cn/WfCSx 前言 在前一章中&#xff0c;我们了解了 Ajax 的分析和抓取方式&#xff0c;这其实也是 JavaScript 动态渲染的页面的一种情形&#xff0c;通过直接分析 Ajax&#xff0c;我们仍然可以借助 requests 或 urllib 来实现数据爬取…

【数据分享】2020~2050年青藏高原未来LAI变化情景数据集

各位同学们好&#xff0c;今天和大伙儿分享的是2020~2050年青藏高原未来LAI变化情景数据集。如果大家有下载处理数据等方面的问题&#xff0c;可以添加我的微信交流~ 贾坤, 赵琳琳, 夏沐. (2023). 青藏高原未来LAI变化情景数据集&#xff08;2020-2050&#xff09;. 国家青藏高…