使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询

在我之前的文章 “Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)” 里,我详述如何使用 Streamlit,Langchain, Elasticsearch 及 OpenAI 来针对 PDF 进行聊天。在今天的文章中,我将使用 Chainlit 来展示如使用 Langchain 及 Elasticsearch 针对 PDF 文件进行查询。

为方便大家学习,我的代码在地址 GitHub - liu-xiao-guo/langchain-openai-chainlit: Chat with your documents (pdf, csv, text) using Openai model, LangChain and Chainlit 进行下载。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

 拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt 
http_ca.crt

安装 Python 依赖包

我们在当前的目录下打入如下的命令:

python3 -m venv .venv
source .venv/bin/activate

然后,我们再打入如下的命令:

$ pwd
/Users/liuxg/python/langchain-openai-chainlit
$ source .venv/bin/activate
(.venv) $ pip3 install -r requirements.txt

运行应用

有关 Chainlit 的更多知识请参考 Overview - Chainlit。这里就不再赘述。有关 pdf_qa.py 的代码如下:

pdf_qa.py

# Import necessary modules and define env variables# from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_openai import ChatOpenAI
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
import os
import io
import chainlit as cl
import PyPDF2
from io import BytesIOfrom pprint import pprint
import inspect
# from langchain.vectorstores import ElasticsearchStore
from langchain_community.vectorstores import ElasticsearchStore
from elasticsearch import Elasticsearchfrom dotenv import load_dotenv# Load environment variables from .env file
load_dotenv()OPENAI_API_KEY= os.getenv("OPENAI_API_KEY")
ES_USER = os.getenv("ES_USER")
ES_PASSWORD = os.getenv("ES_PASSWORD")
elastic_index_name='pdf_docs'# text_splitter and system templatetext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)system_template = """Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
The "SOURCES" part should be a reference to the source of the document from which you got your answer.Example of your response should be:```
The answer is foo
SOURCES: xyz
```Begin!
----------------
{summaries}"""messages = [SystemMessagePromptTemplate.from_template(system_template),HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}@cl.on_chat_start
async def on_chat_start():# Sending an image with the local file pathelements = [cl.Image(name="image1", display="inline", path="./robot.jpeg")]await cl.Message(content="Hello there, Welcome to AskAnyQuery related to Data!", elements=elements).send()files = None# Wait for the user to upload a PDF filewhile files is None:files = await cl.AskFileMessage(content="Please upload a PDF file to begin!",accept=["application/pdf"],max_size_mb=20,timeout=180,).send()file = files[0]# print("type: ", type(file))# print("file: ", file)# pprint(vars(file))# print(file.content)msg = cl.Message(content=f"Processing `{file.name}`...")await msg.send()# Read the PDF file# pdf_stream = BytesIO(file.content)with open(file.path, 'rb') as f:pdf_content = f.read()pdf_stream = BytesIO(pdf_content)pdf = PyPDF2.PdfReader(pdf_stream)pdf_text = ""for page in pdf.pages:pdf_text += page.extract_text()# Split the text into chunkstexts = text_splitter.split_text(pdf_text)# Create metadata for each chunkmetadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]# Create a Chroma vector storeembeddings = OpenAIEmbeddings()url = f"https://{ES_USER}:{ES_PASSWORD}@localhost:9200"connection = Elasticsearch(hosts=[url], ca_certs = "./http_ca.crt", verify_certs = True)docsearch = Noneif not connection.indices.exists(index=elastic_index_name):print("The index does not exist, going to generate embeddings")   docsearch = await cl.make_async(ElasticsearchStore.from_texts)( texts,embedding = embeddings, es_url = url, es_connection = connection,index_name = elastic_index_name, es_user = ES_USER,es_password = ES_PASSWORD,metadatas=metadatas)else: print("The index already existed")docsearch = ElasticsearchStore(es_connection=connection,embedding=embeddings,es_url = url, index_name = elastic_index_name, es_user = ES_USER,es_password = ES_PASSWORD    )# Create a chain that uses the Chroma vector storechain = RetrievalQAWithSourcesChain.from_chain_type(ChatOpenAI(temperature=0),chain_type="stuff",retriever=docsearch.as_retriever(search_kwargs={"k": 4}),)# Save the metadata and texts in the user sessioncl.user_session.set("metadatas", metadatas)cl.user_session.set("texts", texts)# Let the user know that the system is readymsg.content = f"Processing `{file.name}` done. You can now ask questions!"await msg.update()cl.user_session.set("chain", chain)@cl.on_message
async def main(message:str):chain = cl.user_session.get("chain")  # type: RetrievalQAWithSourcesChainprint("chain type: ", type(chain))cb = cl.AsyncLangchainCallbackHandler(stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"])cb.answer_reached = Trueprint("message: ", message)pprint(vars(message))print(message.content)res = await chain.acall(message.content, callbacks=[cb])answer = res["answer"]sources = res["sources"].strip()source_elements = []# Get the metadata and texts from the user sessionmetadatas = cl.user_session.get("metadatas")all_sources = [m["source"] for m in metadatas]texts = cl.user_session.get("texts")print("texts: ", texts)if sources:found_sources = []# Add the sources to the messagefor source in sources.split(","):source_name = source.strip().replace(".", "")# Get the index of the sourcetry:index = all_sources.index(source_name)except ValueError:continuetext = texts[index]found_sources.append(source_name)# Create the text element referenced in the messagesource_elements.append(cl.Text(content=text, name=source_name))if found_sources:answer += f"\nSources: {', '.join(found_sources)}"else:answer += "\nNo sources found"if cb.has_streamed_final_answer:cb.final_stream.elements = source_elementsawait cb.final_stream.update()else:await cl.Message(content=answer, elements=source_elements).send()

我们可以使用如下的命令来运行:

export ES_USER="elastic"
export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
export OPENAI_API_KEY="YourOpenAiKey"chainlit run pdf_qa.py -w
(.venv) $ chainlit run pdf_qa.py -w
2024-02-14 10:58:30 - Loaded .env file
2024-02-14 10:58:33 - Your app is available at http://localhost:8000
2024-02-14 10:58:34 - Translation file for en not found. Using default translation en-US.
2024-02-14 10:58:35 - 2 changes detected

我们先选择项目自带的 pdf 文件:

Is sample PDF download critical to an organization?

Does comprehensive PDF testing have various advantages?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ArrayList 与 LinkedList 区别

serialVersionUID 有什么作用? serialVersionUID 是 Java 序列化机制中的一个重要概念,它用于确保反序列化对象与序列化对象保持兼容。当一个类实现 java.io.Serializable 接口时,可以通过定义一个名为 serialVersionUID 的静态常量来指定该…

[缓存] - 2.分布式缓存重磅中间件 Redis

1. 高性能 尽量使用短key 不要存过大的数据 避免使用keys *:使用SCAN,来代替 在存到Redis之前压缩数据 设置 key 有效期 选择回收策略(maxmemory-policy) 减少不必要的连接 限制redis的内存大小(防止swap,OOM) slowLog …

Swift Combine 网络受限时从备用 URL 请求数据 从入门到精通十四

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

数据结构.图的存储

一、邻接矩阵法 二、邻列表法 三、十字链表法

python Flask与微信小程序 统计管理

common/models/stat/StatDailyMember.py DROP TABLE IF EXISTS stat_daily_member;CREATE TABLE stat_daily_member (id int(11) unsigned NOT NULL AUTO_INCREMENT,date date NOT NULL COMMENT 日期,member_id int(11) NOT NULL DEFAULT 0 COMMENT 会员id,total_shared_count …

例39:使用List控件

建立一个EXE工程,在窗体上放一个文本框,一个列表框和三个按钮输入如下的代码: Sub Form1_Command1_BN_Clicked(hWndForm As hWnd, hWndControl As hWnd)List1.AddItem(Text1.Text)End SubSub Form1_Command2_BN_Clicked(hWndForm As hWnd, h…

【python之美】减少人工成本之批量拿取文件名保存_4

获取文件名保存 准备工作: 上代码: import ospath "C:\\Users\\Administrator\\Desktop\\text\\" file_names os.listdir(path) print(file_names)i 1 for file_name in file_names:name file_name.split(_)[0]print(name)new_name name "_修改后第&qu…

【zabbix】(四)-钉钉告警企业微信配置

前提条件: 已经安装了Python3环境(脚本需要requests模块)。Centos7.x自带Python2(不含requests模块) 钉钉告警配置 一 安装Python3 参考该优秀文档部署 查看Python的模块:pip list / pip3 list 报错 …

一周学会Django5 Python Web开发-项目配置settings.py文件-基本配置

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计17条视频,包括:2024版 Django5 Python we…

Linux第54步_根文件系统第1步_编译busybox并安装_然后添加“根文件系统”的库

学习编译busybox,并安装,然后添加“根文件系统”的库。有人说busybox构建根文件系统,只适合学习,不适合做项目。 1、了解ubuntu的根文件系统 根文件系统的目录名为“/”,就是一个斜杠。 1)、输入“cd /回车”&…

Python爬虫之自动化测试Selenium#7

爬虫专栏:http://t.csdnimg.cn/WfCSx 前言 在前一章中,我们了解了 Ajax 的分析和抓取方式,这其实也是 JavaScript 动态渲染的页面的一种情形,通过直接分析 Ajax,我们仍然可以借助 requests 或 urllib 来实现数据爬取…

【数据分享】2020~2050年青藏高原未来LAI变化情景数据集

各位同学们好,今天和大伙儿分享的是2020~2050年青藏高原未来LAI变化情景数据集。如果大家有下载处理数据等方面的问题,可以添加我的微信交流~ 贾坤, 赵琳琳, 夏沐. (2023). 青藏高原未来LAI变化情景数据集(2020-2050). 国家青藏高…

app移动应用开发

1.案例7.安安的通讯助手 目标 组件设计 素材准备 所有组件的说明及属性设置(1) 所有组件的说明及属性设置(2) 所有组件的说明及属性设置(3)布局小技巧 行为逻辑设计 自动回复短信 短信收发器 组件 记录已收…

LeetCode72. Edit Distance——动态规划

文章目录 一、题目二、题解 一、题目 Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2. You have the following three operations permitted on a word: Insert a character Delete a character Replace …

编辑器的新选择(基本不用配置)

Cline 不用看网上那些教程Cline几乎不用配置。 点击设置直接选择Chinese, C直接在选择就行了。 Cline是一个很好的编辑器,有很多懒人必备的功能。 Lightly 这是一个根本不用配置的C编辑器。 旁边有目录,而且配色也很好,语言标准可以自己…

【前端设计】炫酷导航栏

欢迎来到前端设计专栏&#xff0c;本专栏收藏了一些好看且实用的前端作品&#xff0c;使用简单的html、css语法打造创意有趣的作品&#xff0c;为网站加入更多高级创意的元素。 html <!DOCTYPE html> <html lang"en"> <head><meta charset&quo…

c语言操作符(上

目录 ​编辑 原码、反码、补码 1、正数 2、负数 3、二进制计算1-1 移位操作符 1、<<左移操作符 2、>>右移操作符 位操作符&、|、^、~ 1、&按位与 2、|按位或 3、^按位异或 特点 4、~按位取反 原码、反码、补码 1、正数 原码 反码 补码相同…

Rust入门4——基本编程概念

文章目录 1. 变量与可变性2. 数据类型&#xff1a;标量类型3. 数据类型&#xff1a;复合类型4. 函数和注释 1. 变量与可变性 声明变量使用let关键字 默认情况下&#xff0c;变量是不可变的 声明变量时&#xff0c;在let后加上mut关键字&#xff0c;就可以使变量可变 常量在绑…

单片机学习笔记---DS18B20温度读取

目录 OneWire.c 模拟初始化的时序 模拟发送一位的时序 模拟接收一位的时序 模拟发送一个字节的时序 模拟接收一个字节的时序 OneWire.h DS18B20.c DS18B20数据帧 模拟温度变换的数据帧 模拟温度读取的数据帧 DS18B20.h main.c 上一篇讲了DS18B20温度传感器的工作原…

blender在几何节点中的这些变换中的旋转,其实可以是两种旋转顺序

看似xyz的旋转角度&#xff0c;但如果按照欧拉角来谈它的旋转&#xff0c;就大有学问了。 我们知道&#xff0c;在blender中有局部旋转和全局旋转。但其实这两者在某种情况下可以等价。 那就是&#xff0c;如果参照全局坐标系&#xff0c;按xyz的顺序进行欧拉旋转&#xff0c;…