数字图像处理实验记录十(图像分割实验)

一、基础知识

1、什么是图像分割
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。
2、图像分割是怎么实现的
图像分割算法基于像素值的不连续性和相似性,不连续性是图像的边缘,再根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合。

二、实验要求

三、实验记录(具体任务只展示对图片1的处理)

总代码:

clear all;
close all;
clc;
% 实验11 图像分割
H1 = [1,2,1;0,0,0;-1,-2,-1];
H2 = [1,0,-1;2,0,-2;1,0,-1];
H3 = [0,1,2;-1,0,1;-2,-1,0 ];
H4 = [2,1,0;1,0,-1;0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);I_sobel = I1+I2;
I_sobel2 = I3+I4;subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片1_LoG');% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');I = imread('02.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片2_sobel');I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);I_sobel = I1+I2;
I_sobel2 = I3+I4;subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片2_LoG');% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片2_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');
I = imread('Acat.png');
I = rgb2gray(I);
figure('NumberTitle','off','Name','分割图片3_sobel');I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);I_sobel = I1+I2;
I_sobel2 = I3+I4;subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');
figure('NumberTitle','off','Name','分割图片3_LoG');% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');
figure('NumberTitle','off','Name','分割图片3_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);
imshow(I);
title('原始图像');subplot(1, 2, 2);
imshow(res2);
title('局部阈值法分割结果');

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。

H1 = [1,2,1;0,0,0;-1,-2,-1];
H2 = [1,0,-1;2,0,-2;1,0,-1];
H3 = [0,1,2;-1,0,1;-2,-1,0 ];
H4 = [2,1,0;1,0,-1;0,-1,-2 ];
I = imread('01.png');
I = rgb2gray(I);
% 1.分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
figure('NumberTitle','off','Name','分割图片1_sobel');I1 = imfilter(I,H1);
I2 = imfilter(I,H2);
I3 = imfilter(I,H3);
I4 = imfilter(I,H4);I_sobel = I1+I2;
I_sobel2 = I3+I4;subplot(2,1,1);imshow(I);title('原图');
subplot(2,2,3);imshow(I_sobel);title('sobel梯度图');
subplot(2,2,4);imshow(I_sobel2);title('sobel对角线梯度图');

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。

figure('NumberTitle','off','Name','分割图片1_LoG');% 使用 LoG (拉普拉斯高斯) 算子进行边缘检测
log_operator = fspecial('log', [5, 5], 1);  % 5x5 LoG 算子,标准差为 1
edge_image_log = abs(imfilter(double(I), log_operator, 'replicate'));% 使用阈值保留大响应区域
threshold = 0.5;  % 设置阈值
res1 = edge_image_log > threshold;% 显示原始图像和边缘检测结果
subplot(1, 2, 1);imshow(I);title('原始图像');subplot(1, 2, 2);imshow(res1);title('LoG 边缘检测结果');

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。

figure('NumberTitle','off','Name','分割图片1_局部阈值法');
% 使用局部阈值法进行图像分割
threshold = adaptthresh(I, 0.7);  % 设置阈值
res2 = imbinarize(I, threshold);% 显示原始图像和局部阈值法分割结果
subplot(1, 2, 1);imshow(I);title('原始图像');
subplot(1, 2, 2);imshow(res2);title('局部阈值法分割结果');

四、实验结果

任务1:

分别使用sobel和sobel对角线算子处理图像。并计算图像梯度图。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务2:

使用拉普拉斯高斯算子对图像进行边缘检测。(使用LoG算子处理图像,通过阈值保留大响应区域,求出二值图像中位于边缘的像素完成边缘检测)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

任务3:

采用阈值法实现图像分割,尝试采取局部阈值法,得到更佳的效果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/681235.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu下如何查看显卡及显卡驱动

ubuntu下如何查看显卡及显卡驱动 使用nvidia-smi 工具查看 查看显卡型号nvida-smi -L $ nvidia-smi -L GPU 0: NVIDIA GeForce RTX 3050 4GB Laptop GPU (UUID: GPU-4cf7b7cb-f103-bf56-2d59-304f8996e28c)当然直接使用nvida-smi 命令可以查看更多信息 $ nvidia-smi Mon Fe…

C# CAD2016获取数据操作BlockTableRecord、Polyline、DBObject

一、数据操作说明 //DBObject 基础类 DBObject dbObj (DBObject)tr.GetObject(outerId, OpenMode.ForRead); //Polyline 线段类 Polyline outerPolyline (Polyline)tr.GetObject(outerId, OpenMode.ForRead); //BlockTableRecord 块表类 BlockTableRecord modelSpace (Bloc…

vue_dev_tools工具下载安装打包

vue_dev_tools工具下载安装打包 一、简介二、安装方式2.1.安装图文2.2.打包工具 endl 一、简介 使用 Vue 时,在浏览器上安装 Vue Devtools Vue Devtools 是 Vue 官方发布的调试浏览器插件,可以安装在 Chrome 和 Firefox 等浏览器上,直接内嵌…

LeetCode Python - 12. 整数转罗马数字

目录 题目答案运行结果 题目 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1。1…

去空行小工具Html + Javascript

这是一个平常用到的小工具&#xff0c;为了节省屏幕空间把空行去掉&#xff0c;怕要用的时候找不到故记录在此。 效果图 网页版&#xff0c;放在浏览器里就可以用 <!doctype html> <html><head><meta charset"utf-8"><title>去回车…

网络安全的今年:量子、生成人工智能以及 LLM 和密码

尽管世界总是难以预测&#xff0c;但网络安全的几个强劲趋势表明未来几个月的发展充满希望和令人担忧。有一点是肯定的&#xff1a;2024 年将是非常重要且有趣的一年。 近年来&#xff0c;人工智能&#xff08;AI&#xff09;以令人难以置信的速度发展&#xff0c;其在网络安全…

如何在Spring Boot中启用HTTPS?

在Spring Boot中启用HTTPS是一个增强应用程序安全性的重要步骤。下面我将介绍如何将一个Spring Boot项目配置成支持HTTPS协议。 引入 在现代的网络通信中&#xff0c;安全性成为了一个不能忽视的要求。特别是当我们谈论到数据传输时&#xff0c;保护用户信息的安全性是非常重要…

中科大计网学习记录笔记(八):FTP | EMail

前言&#xff1a; 学习视频&#xff1a;中科大郑烇、杨坚全套《计算机网络&#xff08;自顶向下方法 第7版&#xff0c;James F.Kurose&#xff0c;Keith W.Ross&#xff09;》课程 该视频是B站非常著名的计网学习视频&#xff0c;但相信很多朋友和我一样在听完前面的部分发现信…

基于STM32与FreeRTOS的四轴机械臂项目

目录 一、项目介绍 二、前期准备 1.硬件准备 2.开发环境 3.CubeMX配置 三、裸机各种模块测试 1.舵机模块 2.蓝牙模块 3.按键摇杆传感器模块和旋钮电位器模块 4.OLED模块 5.W25Q128模块 四、裸机三种控制测试 1.摇杆控制 2.示教器控制 3.蓝牙控制 五、裸机与Free…

LabVIEW智能温度监控系统

LabVIEW智能温度监控系统 介绍了一个基于LabVIEW的智能温度监控系统&#xff0c;实现对工业环境中温度的实时监控与调控。通过集成传感器技术和LabVIEW软件平台&#xff0c;系统能够自动检测环境温度&#xff0c;及时响应温度变化&#xff0c;并通过图形用户界面(GUI)为用户提…

【头歌·计组·自己动手画CPU】二、运算器设计(讲解版) 【计算机硬件系统设计】

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的很重要&…

什么是智慧隧道,如何建设智慧隧道

一、隧道管理的难点痛点 近年来隧道建设规模不断扩大&#xff0c;作为隧道通车里程最多、规模最大的国家&#xff0c;截至2022年底&#xff0c;我国公路隧道共有24850处、2678.43万延米&#xff0c;其中特长隧道1752处、795.11万延米&#xff0c;长隧道6715处、1172.82万延米。…

【北邮鲁鹏老师计算机视觉课程笔记】06 corner 局部特征

【北邮鲁鹏老师计算机视觉课程笔记】06 corner 局部特征 1 局部特征的任务牵引&#xff1a;全景拼接 ①提取特征 ②匹配特征 ③拼接图像 我们希望特征有什么特性&#xff1f; ①可重复性 ②显著性 ③计算效率和表达紧凑性 ④局部性 2 特征点检测的任务 3 角点 在角点&#…

记一次Spring for Kotlin中JacksonConfig配置Long转String失败

目录 起因真相解决方案 起因 众所周知&#xff0c;浏览器在处理 Long类型&#xff08;比如雪花算法生成的id&#xff09;时&#xff0c;往往会出大事情。 浏览器在处理长整型&#xff08;Long&#xff09;类型时可能会遇到问题&#xff0c;主要原因是浏览器在处理数字时有限制…

8.【CPP】Vector(扩容问题||迭代器失效问题简述迭代器的种类)

vector是表示可变大小数组的序列容器。就像数组一样&#xff0c;vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问&#xff0c;和数组一样高效。但是又不像数组&#xff0c;它的大小是可以动态改变的&#xff0c;而且它的大小会被容器自…

ubuntu服务器部署gitlab docker并配置nginx反向代理https访问

拉取镜像 docker pull gitlab/gitlab-ce运行容器 docker run --detach \--publish 9080:80 --publish 9022:22 --publish 9443:443\--namegitlab \--restartalways \--volume /home/docker/gitlab/config:/etc/gitlab \--volume /home/docker/gitlab/logs:/var/log/gitlab \-…

如何学习VBA_3.2.14:VBA中字符串的处理和判断函数

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的劳动效率&#xff0c;而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册&#xff0c;现在已经全部完成&#xff0c;希望大家利用、学习。 如果…

RestFul的认识

前言 RESTful 是 Representational State Transfer 的缩写&#xff0c;是一种软件架构风格&#xff0c;用于在网络上构建和整合应用程序。它基于 HTTP 协议&#xff0c;并定义了一组约束和规范&#xff0c;用于规范客户端和服务器之间的通信。 RESTful API 是遵循 REST 架构规…

【复现】Supabase后端服务 SQL注入漏洞_48

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一&#xff1a; 四.修复建议&#xff1a; 五. 搜索语法&#xff1a; 六.免责声明 一.概述 Supabase是什么 Supabase将自己定位为Firebase的开源替代品&#xff0c;提供了一套工具来帮助开发者构建web或移动应用程序。 Sup…

441. Arranging Coins( 排列硬币)

问题描述 你总共有 n 枚硬币&#xff0c;并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯&#xff0c;其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。 给你一个数字 n &#xff0c;计算并返回可形成 完整阶梯行 的总行数。 问题分析 等差数列求和问…