86.分布式锁理论分析

文章目录

  • 前言
  • 一、为什么需要分布式锁?
  • 二、基于 Redis 分布式锁怎么实现?
  • 三、Redis 分布锁存在的问题
    • 3.1 死锁问题
    • 3.2 锁过期时间问题
    • 3.3 锁被别人释放问题
  • 四、Redis 分布锁小结
  • 五、Redis 主从同步对分布式锁的影响
  • 六、Redlock 方案
  • 七、Redlock 的争论
    • 7.1 分布式专家 Martin 对于 Redlock 的质疑
    • 7.2 Redis 作者 Antirez 的反驳
  • 八、基于 ZooKeeper 的分布式锁
  • 九、基于 Etcd 的分布式锁
  • 十、我对分布式锁的理解
  • 十一、总结
  • 十二、后记

前言

高并发业务场景下,部署在不同机器上的业务进程,如果需要同时操作共享资源,为了避免「时序性」问题,通常会借助 Redis 的分布式锁来做互斥,以保证业务的正确性。

基于 Redis 实现的分布式锁虽然足够简单,但这把小小的分布锁究竟安全吗?有没有可能会失效?

  • 基于 Redis 如何实现一个分布式锁?它足够安全吗?
  • 一个严谨的分布式锁模型如何实现,应该考虑什么?
  • 我们经常听到的 Redlock 有什么问题?
  • 业界争论 Redlock,到底在争论什么?哪种观点是对的?
  • 分布式锁到底用 Redis 还是 ZooKeeperEtcd

这些问题你能清晰回答上来吗?

读完这篇文章,你不仅可以彻底了解分布式锁,还会对「分布式系统」有更加深刻的理解。

文章有点长,但干货很多,希望你可以耐心读完。

一、为什么需要分布式锁?

在开始讲分布式锁之前,有必要简单介绍一下,为什么需要分布式锁?

与分布式锁相对应的是「单机锁」,当我们在写多线程程序时,为了避免同时操作进程中的全局变量,通常会使用一把锁来「互斥」,以保证全局变量的正确性。

又或者,当我们在同一台机器的不同进程,想要同时操作一个共享资源(例如修改同一个文件),我们可以使用操作系统提供的「文件锁」或「信号量」来做互斥。

你可以看到,这些互斥操作,都仅限于线程、进程处于同一台机器上,如果是分布在「不同机器」上的不同进程,要同时操作一个共享资源(例如修改数据库的某一行),如何互斥呢?

此时,我们就需要引入「分布式锁」来解决这个问题了。

  • 想要实现分布式锁,必须借助一个外部系统,所有进程都去这个系统上申请「加锁」。

  • 而这个外部系统,必须要实现「互斥」的能力,即两个请求同时进来,只会给一个进程返回成功,另一个返回失败(或等待)。

  • 这个外部系统,可以是 MySQL,也可以是 RedisZooKeeperEtcd但在高并发业务场景下,为了追求更好的性能,我们通常会选择使用 Redis

图片

下面我就以 Redis 为主线,由浅入深,带你深度剖析一下,分布式锁的各种「安全性」问题,帮你彻底理解分布式锁。

在问题分析的过程中,你还会看到分布锁在「分布式系统」下可能会遇到的疑难问题,感受分布式系统的复杂性。

二、基于 Redis 分布式锁怎么实现?

我们从最简单的开始讲起。

想要实现分布式锁,我们依赖 Redis 的「互斥」的能力,我们可以使用 SETNX 命令,这个命令表示SET if Not eXists,即如果key不存在,才会设置它的值,否则什么也不做。

两个客户端进程可以执行这个命令,达到互斥,就可以实现一个分布式锁。

客户端 1 申请加锁,加锁成功:

127.0.0.1:6379> SETNX lock 1
(integer) 1     // 客户端1,加锁成功

客户端 2 申请加锁,因为后到达,加锁失败:

127.0.0.1:6379> SETNX lock 1
(integer) 0     // 客户端2,加锁失败

此时,加锁成功的客户端,就可以去操作「共享资源」,例如,修改 MySQL 的某一行数据,或者调用一个 API 请求。

操作完成后,还要及时释放锁,给后来者让出操作共享资源的机会。如何释放锁呢?

也很简单,直接使用 DEL 命令删除这个 key 即可:

127.0.0.1:6379> DEL lock// 释放锁(integer) 1

这个逻辑非常简单,整体的路程就是这样:

图片

但是,它存在一个很大的问题,当客户端 1 拿到锁后,如果发生下面的场景,就会造成「死锁」:

  1. 程序处理业务逻辑异常,没及时释放锁;
  2. 进程挂了,没机会释放锁。

这时,这个客户端就会一直占用这个锁,而其它客户端就「永远」拿不到这把锁了(锁饥饿)。

怎么解决这个问题呢?

三、Redis 分布锁存在的问题

3.1 死锁问题

对于第 1 种情况,程序在处理业务逻辑时发生异常,没及时释放锁,通常我们需要对这块业务代码加上异常处理,保证无论业务逻辑是否异常,都可以把锁释放掉,例如在 Go deferJava/Pythonfinally 中及时释放锁:

  • Go:defer redis.del(key)

  • Java:try … catch … fianlly: redis.del(key)

  • Python:try … except … fianlly: redis.del(key)

这个取决于你的业务代码的「健壮性」,比较容易解决。

对于第 2 种情况(进程挂了没机会释放锁),我们很容易想到的方案是,在申请锁时,给这把锁设置一个「租期」。

Redis 中实现时,就是给这个 key 设置一个「过期时间」。

这里我们假设,操作共享资源的时间不会超过 10s,那么在加锁时,给这个 key 设置 10s 过期即可:

127.0.0.1:6379> SETNX lock 1    // 加锁
(integer) 1
127.0.0.1:6379> EXPIRE lock 10  // 10s后自动过期
(integer) 1

这样一来,无论客户端是否异常,这个锁都可以在 10s 后被「自动释放」,其它客户端依旧可以拿到锁。但这样真的没问题吗?

还是有问题。现在的操作,加锁、设置过期是 2 条命令,有没有可能只执行了第一条,第二条却「来不及」执行的情况发生呢?例如:

  1. SETNX 执行成功,执行 EXPIRE 时由于网络问题,执行失败;

  2. SETNX 执行成功,Redis 异常宕机,EXPIRE 没有机会执行;

  3. SETNX 执行成功,客户端异常崩溃,EXPIRE 也没有机会执行。

总之,这两条命令不能保证是原子操作(一起成功),就有潜在的风险导致过期时间设置失败,依旧发生「死锁」问题。

怎么办?在 Redis 2.6.12 版本之前,我们需要想尽办法,保证 SETNX EXPIRE 原子性执行,还要考虑各种异常情况如何处理。

但在 Redis 2.6.12 之后,Redis 扩展了 SET 命令的参数,把 NX/EX 集成到了 SET 命令中,用这一条命令就可以了:

// 一条命令保证原子性执行
127.0.0.1:6379> SET lock 1 EX 10 NX
OK

这样就解决了原子性问题。我们再来看分析下,它还有什么问题?

试想这样一种场景:

  1. 客户端 1 加锁成功,开始操作共享资源;

  2. 客户端 1 操作共享资源的时间,「超过」了锁的过期时间,锁被「自动释放」;

  3. 客户端 2 加锁成功,开始操作共享资源;

  4. 客户端 1 操作共享资源完成,释放锁(但释放的是客户端 2 的锁)。

看到了么,这里存在两个严重的问题:

  • 锁过期:客户端 1 操作共享资源耗时太久,导致锁被自动释放,之后被客户端 2 持有;

  • 释放别人的锁:客户端 1 操作共享资源完成后,却又释放了客户端 2 的锁。

导致这两个问题的原因是什么?我们一个个来看。

3.2 锁过期时间问题

第一个问题,可能是我们评估操作共享资源的时间不准确导致的。

例如,操作共享资源的时间「最慢」可能需要 15s,而我们却只设置了 10s 过期,那这就存在锁提前过期的风险。

过期时间太短,那增大冗余时间,例如设置过期时间为 20s,这样总可以了吧?

这样确实可以「缓解」这个问题,降低出问题的概率,但依旧无法「彻底解决」问题。

为什么?原因在于,客户端在拿到锁之后,在操作共享资源时,遇到的场景有可能是很复杂的,例如,程序内部发生异常、网络请求超时等等。

既然是「预估」时间,也只能是大致计算,除非你能预料并覆盖到所有导致耗时变长的场景,但这其实很难,很多时候我们都是凭「感觉」设置过期时间,不太靠谱。

有什么更好的解决方案吗?我们可以考虑设计这样的方案:加锁时,先设置一个过期时间,然后我们开启一个「守护线程」,定时去检测这个锁的失效时间,如果锁快要过期了,操作共享资源还未完成,那么就自动对锁进行「续期」,重新设置过期时间。

担心锁过期,我们主动启动一个线程,定时给锁续期,避免还未操作完共享资源锁就自动过期被释放。

这确实是一个比较好的思路。如果你是 Java 技术栈,幸运的是,已经有一个库把这些工作都封装好了:Redisson

Redisson 是一个 Java 语言实现的 Redis SDK 客户端,在使用分布式锁时,它就采用了「自动续期」的方案来避免锁过期,这个守护线程我们一般也把它叫做「看门狗」线程。

图片

除此之外,这个 SDK 还封装了很多易用的功能:

  • 可重入锁;

  • 乐观锁;

  • 公平锁;

  • 读写锁;

  • Redlock(红锁,下面会详细讲)。

这个 SDK 提供的 API 非常友好,它可以像操作本地锁的方式,操作分布式锁。如果你是 Java 技术栈,可以直接把它用起来。

这里不重点介绍 Redisson 的使用,你可以看官方 Github 学习如何使用,比较简单。

3.3 锁被别人释放问题

我们再来看上面提到的第二个问题,这个问题在于,一个客户端释放了其它客户端持有的锁。

想一下,导致这个问题的关键点在哪?

重点在于,每个客户端在释放锁时,都是「无脑」操作,并没有检查这把锁是否还「归自己持有」,所以就会发生释放别人锁的风险,这样的解锁流程,很不「严谨」!

如何解决这个问题呢?解决办法是:客户端在加锁时,设置一个只有自己知道的「唯一标识」进去。

例如,可以是自己的线程 ID,也可以是一个 UUID(随机且唯一),这里我们以 UUID

例:

// 锁的VALUE设置为UUID
127.0.0.1:6379> SET lock $uuid EX 20 NX
OK

之后,在释放锁时,要先判断这把锁是否还归自己持有,伪代码可以这么写:

// 锁是自己的,才释放
if redis.get("lock") == $uuid:redis.del("lock")

这里释放锁使用的是 GET + DEL 两条命令,这时,又会遇到我们前面讲的原子性问题了。

  • 客户端 1 执行 GET,判断锁是自己的;

  • 客户端 1 执行 GET 结束后,这个锁刚好超时自动释放;

  • 此时,恰好客户端 2 又获取到了这个锁;

  • 之后,客户端 1 在执行 DEL 时,释放的却是客户端2的锁(冲突)。

由此可见,这两个命令还是必须要原子执行才行。怎样原子执行呢?

Lua 脚本。我们可以把这个逻辑,写成 Lua 脚本,让 Redis 来执行。因为 Redis 处理每一个请求是「单线程」执行的,在执行一个 Lua 脚本时,其它请求必须等待,直到这个 Lua 脚本处理完成,这样一来,GET + DEL 之间就不会插入其它命令了。

图片

安全释放锁的 Lua 脚本如下:

// 判断锁是自己的,才释放
if redis.call("GET",KEYS[1]) == ARGV[1]
thenreturn redis.call("DEL",KEYS[1])
elsereturn 0
end

四、Redis 分布锁小结

好,这样一路优化,整个的加锁、解锁的流程就更「严谨」了。

这里我们先小结一下,基于 Redis 实现的分布式锁,一个严谨的的流程如下:

  1. 加锁:SET $lock_key $unique_id EX $expire_time NX;

  2. 操作共享资源:没操作完之前,开启守护线程,定期给锁续期;

  3. 释放锁:Lua 脚本,先 GET 判断锁是否归属自己,再 DEL 释放锁。

简化版代码:

对于大部分业务场景,其实不必考虑上面提到的各种问题,那么下面的代码基本就够啦。

package mainimport ("context""github.com/go-redis/redis/v8""time"
)var redisClient *redis.Clientfunc init() {redisClient = redis.NewClient(&redis.Options{Addr: "localhost:6379",Password: "",DB: 0,})
}func acquireLock(lockKey string, expiration time.Duration) bool {ctx := context.Background()result, err := redisClient.SetNX(ctx, lockKey, "locked", expiration).Result()if err != nil {panic(err)}return result
}func releaseLock(lockKey string) {ctx := context.Background()redisClient.Del(ctx, lockKey)
}func main() {lockKey := "my_lock_key"locked := acquireLock(lockKey, 10*time.Second)if locked {defer releaseLock(lockKey)// 执行业务逻辑}
}

每个问题的解决方案:

  • 死锁:给锁设置租期(过期时间);

  • 过期时间评估不好,锁提前过期:守护线程,定时续期;

  • 锁被别人释放:锁写入唯一标识,释放锁先检查标识,再释放。

还有哪些问题场景,会危害 Redis 锁的安全性呢?

五、Redis 主从同步对分布式锁的影响

我们之前分析的场景都是,锁在「单个」Redis 实例中可能产生的问题,并没有涉及到 Redis 的部署架构细节。

而我们在使用 Redis 时,一般会采用主从集群 + 哨兵的模式部署,这样做的好处在于,当主库异常宕机时,哨兵可以实现「故障自动切换」,把从库提升为主库,继续提供服务,以此保证可用性。

那当「主从发生切换」时,这个分布锁会依旧安全吗?

试想这样的场景:

  1. 客户端 1 在主库上执行 SET 命令,加锁成功;

  2. 此时,主库异常宕机,SET 命令还未同步到从库上(主从复制是异步的);

  3. 从库被哨兵提升为新主库,这个锁在新的主库上,丢失了!

图片

可见,当引入 Redis 副本后,分布锁还是可能会受到影响。怎么解决这个问题?

为此,Redis 的作者提出一种解决方案,就是我们经常听到的 Redlock(红锁)。它真的可以解决上面这个问题吗?

六、Redlock 方案

好,终于到了这篇文章的重头戏。啊?上面讲的那么多问题,难道只是基础?

是的,那些只是开胃菜,真正的硬菜,从这里刚刚开始。如果上面讲的内容,你还没有理解,我建议你重新阅读一遍,先理清整个加锁、解锁的基本流程。

如果你已经对 Redlock 有所了解,这里可以跟着我再复习一遍,如果你不了解 Redlock,没关系,我会带你重新认识它。

值得注意的是,后面我不仅会讲 Redlock 的原理,还会引出有关「分布式系统」中的很多问题,你最好跟紧我的思路,在脑中一起分析问题的答案。

现在我们来看,Redis 作者提出的 Redlock 方案,是如何解决主从切换后,锁失效问题的。

Redlock 的方案基于 2 个前提:

  • 不再需要部署从库和哨兵实例,只部署主库

  • 但主库要部署多个,官方推荐至少 5 个实例

也就是说,想用使用 Redlock,你至少要部署 5 Redis 实例,而且都是主库,它们之间没有任何关系,都是一个个孤立的实例。

注意:不是部署 Redis Cluster,就是部署 5 个简单的 Redis 实例。

图片

Redlock 具体如何使用呢?

整体的流程是这样的,一共分为 5 步:

  1. 客户端先获取「当前时间戳T1」;

  2. 客户端依次向这 5Redis 实例发起加锁请求(用前面讲到的 SET 命令),且每个请求会设置超时时间(毫秒级,要远小于锁的有效时间),如果某一个实例加锁失败(包括网络超时、锁被其它人持有等各种异常情况),就立即向下一个 Redis 实例申请加锁;

  3. 如果客户端从 >=3 个(大多数)以上 Redis 实例加锁成功,则再次获取「当前时间戳T2」,如果 T2 - T1 < 锁的过期时间,此时,认为客户端加锁成功,否则认为加锁失败;

  4. 加锁成功,去操作共享资源(例如修改 MySQL 某一行,或发起一个 API 请求);

  5. 加锁失败,向「全部节点」发起释放锁请求(前面讲到的 Lua 脚本释放锁)。

我简单帮你总结一下,有 4个重点:

  1. 客户端在多个 Redis 实例上申请加锁;

  2. 必须保证大多数节点加锁成功;

  3. 大多数节点加锁的总耗时,要小于锁设置的过期时间;

  4. 释放锁,要向全部节点发起释放锁请求。

第一次看可能不太容易理解,建议你把上面的文字多看几遍,加深记忆。

然后,记住这 5 步,非常重要,下面会根据这个流程,剖析各种可能导致锁失效的问题假设。

好,明白了 Redlock 的流程,我们来看 Redlock 为什么要这么做。

1) 为什么要在多个实例上加锁?

本质上是为了「容错」,部分实例异常宕机,剩余的实例加锁成功,整个锁服务依旧可用。

2) 为什么大多数加锁成功,才算成功?

多个Redis实例一起来用,其实就组成了一个「分布式系统」。

在分布式系统中,总会出现「异常节点」,所以,在谈论分布式系统问题时,需要考虑异常节点达到多少个,也依旧不会影响整个系统的「正确性」。

这是一个分布式系统「容错」问题,这个问题的结论是:如果只存在「故障」节点,只要大多数节点正常,那么整个系统依旧是可以提供正确服务的。

这个问题的模型,就是我们经常听到的「拜占庭将军」问题,感兴趣可以去看算法的推演过程。

3) 为什么步骤 3 加锁成功后,还要计算加锁的累计耗时?

因为操作的是多个节点,所以耗时肯定会比操作单个实例耗时更久,而且,因为是网络请求,网络情况是复杂的,有可能存在延迟、丢包、超时等情况发生,网络请求越多,异常发生的概率就越大。

所以,即使大多数节点加锁成功,但如果加锁的累计耗时已经「超过」了锁的过期时间,那此时有些实例上的锁可能已经失效了,这个锁就没有意义了。

4) 为什么释放锁,要操作所有节点?

在某一个 Redis 节点加锁时,可能因为「网络原因」导致加锁失败。

例如,客户端在一个 Redis 实例上加锁成功,但在读取响应结果时,网络问题导致读取失败,那这把锁其实已经在 Redis 上加锁成功了。

所以,释放锁时,不管之前有没有加锁成功,需要释放「所有节点」的锁,以保证清理节点上「残留」的锁。

好了,明白了 Redlock 的流程和相关问题,看似 Redlock 确实解决了 Redis 节点异常宕机锁失效的问题,保证了锁的「安全性」。但事实真的如此吗?

七、Redlock 的争论

Redis 作者把这个方案一经提出,就马上受到业界著名的分布式系统专家的质疑!

这个专家叫 Martin,是英国剑桥大学的一名分布式系统研究员。在此之前他曾是软件工程师和企业家,从事大规模数据基础设施相关的工作。他还经常在大会做演讲,写博客、写书、也是开源贡献者。

他写的这本分布式系统领域的书《数据密集型应用系统设计》,豆瓣评分高达 9.7,好评如潮。
在这里插入图片描述

他马上写了篇文章,质疑这个 Redlock 的算法模型是有问题的,并对分布式锁的设计,提出了自己的看法。

之后,Redis 作者 Antirez 面对质疑,不甘示弱,也写了一篇文章,反驳了对方的观点,并详细剖析了 Redlock 算法模型的更多设计细节。

而且,关于这个问题的争论,在当时互联网上也引起了非常激烈的讨论。

二人思路清晰,论据充分,这是一场高手过招,也是分布式系统领域非常好的一次思想的碰撞!双方都是分布式系统领域的专家,却对同一个问题提出很多相反的论断,究竟是怎么回事?

下面我会从他们的争论文章中,提取重要的观点和精华,整理呈现给你。

提醒:后面的信息量极大,可能不宜理解,最好放慢速度阅读。

7.1 分布式专家 Martin 对于 Redlock 的质疑

在他的文章中,主要阐述了 4 个论点:

1) 分布式锁的目的是什么?

Martin 表示,你必须先清楚你在使用分布式锁的目的是什么?他认为有两个目的。

第一,效率。

使用分布式锁的互斥能力,是避免不必要地做同样的两次工作(例如一些昂贵的计算任务)。如果锁失效,并不会带来「恶性」的后果,例如发了 2 次邮件等,无伤大雅。

第二,正确性。

使用锁用来防止并发进程互相干扰。如果锁失效,会造成多个进程同时操作同一条数据,产生的后果是数据严重错误、永久性不一致、数据丢失等恶性问题,就像给患者服用重复剂量的药物一样,后果严重。

他认为,如果你是为了前者——效率,那么使用单机版 Redis 就可以了,即使偶尔发生锁失效(宕机、主从切换),都不会产生严重的后果。而使用 Redlock 太重了,没必要。

而如果是为了正确性,Martin 认为 Redlock 根本达不到安全性的要求,也依旧存在锁失效的问题!

2) 锁在分布式系统中会遇到的问题

Martin 表示,一个分布式系统,更像一个复杂的「野兽」,存在着你想不到的各种异常情况。

这些异常场景主要包括三大块,这也是分布式系统会遇到的三座大山:NPC

  • N:Network Delay,网络延迟;

  • P:Process Pause,进程暂停(比如GC);

  • C:Clock Drift,时钟漂移。

Martin 用一个进程暂停(GC)的例子,指出了 Redlock 安全性问题:

  1. 客户端 1 请求锁定节点 A、B、C、D、E;

  2. 客户端 1 的拿到锁后,进入 GC(时间比较久);

  3. 所有 Redis 节点上的锁都过期了;

  4. 客户端 2 获取到了 A、B、C、D、E 上的锁;

  5. 客户端 1 GC 结束,认为成功获取锁;

  6. 客户端 2 也认为获取到了锁,发生「冲突」。

图片

Martin 认为,GC 可能发生在程序的任意时刻,而且执行时间是不可控的。

注:当然,即使是使用没有 GC 的编程语言,在发生网络延迟时,也都有可能导致 Redlock 出现问题,这里 Martin 只是拿 GC 举例。

3) 假设时钟正确的是不合理的

又或者,当多个 Redis 节点「时钟」发生问题时,也会导致 Redlock 锁失效。

  1. 客户端 1 获取节点 A、B、C 上的锁,但由于网络问题,无法访问 DE

  2. 节点 C 上的时钟「向前跳跃」,导致锁到期(从而其他客户端可以获取C上的锁了);

  3. 客户端 2 获取节点 C、D、E 上的锁,由于网络问题,无法访问 A B

  4. 客户端 1 2 现在都相信它们持有了锁(冲突);

Martin 觉得,Redlock 必须「强依赖」多个节点的时钟是保持同步的,一旦有节点时钟发生错误,那这个算法模型就失效了。

即使 C 不是时钟跳跃,而是「崩溃后立即重启」,也会发生类似的问题。

Martin 继续阐述,机器的时钟发生错误,是很有可能发生的:

  • 系统管理员「手动修改」了机器时钟

  • 机器时钟在同步 NTP 时间时,发生了大的「跳跃」

总之,Martin 认为,Redlock 的算法是建立在「同步模型」基础上的,有大量资料研究表明,同步模型的假设,在分布式系统中是有问题的。

在混乱的分布式系统的中,你不能假设系统时钟就是对的,所以,你必须非常小心你的假设。

4) 提出 fencing token 的方案,保证正确性

相对应的,Martin 提出一种被叫作 fencing token 的方案,保证分布式锁的正确性。

这个模型流程如下:

  • 客户端在获取锁时,锁服务可以提供一个「递增」的 token

  • 客户端拿着这个 token 去操作共享资源

  • 共享资源可以根据 token 拒绝「后来者」的请求

在这里插入图片描述

这样一来,无论 NPC 哪种异常情况发生,都可以保证分布式锁的安全性,因为它是建立在「异步模型」上的。

Redlock 无法提供类似 fencing token 的方案,所以它无法保证安全性。

他还表示,一个好的分布式锁,无论 NPC 怎么发生,可以不在规定时间内给出结果,但并不会给出一个错误的结果。也就是只会影响到锁的「性能」(或称之为活性),而不会影响它的「正确性」。

Martin 的结论:

1、Redlock 不伦不类:它对于效率来讲,Redlock 比较重,没必要这么做,而对于正确性来说,Redlock 是不够安全的。

2、时钟假设不合理:该算法对系统时钟做出了危险的假设(假设多个节点机器时钟都是一致的),如果不满足这些假设,锁就会失效。

3、无法保证正确性Redlock不能提供类似 fencing token 的方案,所以解决不了正确性的问题。为了正确性,请使用有「共识系统」的软件,例如 ZooKeeper

好了,以上就是 Martin 反对使用 Redlock 的观点,看起来有理有据。

下面我们来看 Redis 作者 Antirez 是如何反驳的。

7.2 Redis 作者 Antirez 的反驳

Redis 作者的文章中,重点有 3 个:

1) 解释时钟问题

首先,Redis 作者一眼就看穿了对方提出的最为核心的问题:时钟问题。

Redis 作者表示,Redlock 并不需要完全一致的时钟,只需要大体一致就可以了,允许有「误差」。

例如要计时 5s,但实际可能记了 4.5s,之后又记了 5.5s,有一定误差,但只要不超过「误差范围」锁失效时间即可,这种对于时钟的精度的要求并不是很高,而且这也符合现实环境。

对于对方提到的「时钟修改」问题,Redis 作者反驳到:

  • 手动修改时钟:不要这么做就好了,否则你直接修改 Raft 日志,那 Raft 也会无法工作…

  • 时钟跳跃:通过「恰当的运维」,保证机器时钟不会大幅度跳跃(每次通过微小的调整来完成),实际上这是可以做到的

为什么 Redis 作者优先解释时钟问题?因为在后面的反驳过程中,需要依赖这个基础做进一步解释。

2) 解释网络延迟、GC 问题

之后,Redis 作者对于对方提出的,网络延迟wan、进程 GC 可能导致 Redlock 失效的问题,也做了反驳:

我们重新回顾一下,Martin 提出的问题假设:

  1. 客户端 1 请求锁定节点 A、B、C、D、E;

  2. 客户端 1 的拿到锁后,进入 GC

  3. 所有 Redis 节点上的锁都过期了;

  4. 客户端 2 获取节点 A、B、C、D、E上的锁;

  5. 客户端 1 GC 结束,认为成功获取锁;

  6. 客户端 2 也认为获取到锁,发生「冲突」。

在这里插入图片描述

Redis 作者反驳到,这个假设其实是有问题的,Redlock 是可以保证锁安全的。这是怎么回事呢?

还记得前面介绍 Redlock 流程的那 5 步吗?这里我再拿过来让你复习一下。

  1. 客户端先获取「当前时间戳T1

  2. 客户端依次向这 5Redis 实例发起加锁请求(用前面讲到的 SET 命令),且每个请求会设置超时时间(毫秒级,要远小于锁的有效时间),如果某一个实例加锁失败(包括网络超时、锁被其它人持有等各种异常情况),就立即向下一个 Redis 实例申请加锁;

  3. 如果客户端从 3 个(大多数)以上 Redis实例加锁成功,则再次获取「当前时间戳T2」,如果 T2 - T1 < 锁的过期时间,此时,认为客户端加锁成功,否则认为加锁失败;

  4. 加锁成功,去操作共享资源(例如修改 MySQL 某一行,或发起一个 API 请求);

  5. 加锁失败,向「全部节点」发起释放锁请求(前面讲到的Lua脚本释放锁)。

注意,重点是 1-3,在步骤 3,加锁成功后为什么要重新获取「当前时间戳T2」?还用 T2 - T1 的时间,与锁的过期时间做比较?

Redis 作者强调:如果在 1-3 发生了网络延迟、进程 GC 等耗时长的异常情况,那在第 3 步 T2 - T1,是可以检测出来的,如果超出了锁设置的过期时间,那这时就认为加锁会失败,之后释放所有节点的锁就好了!

Redis 作者继续论述,如果对方认为,发生网络延迟、进程 GC 是在步骤 3 之后,也就是客户端确认拿到了锁,去操作共享资源的途中发生了问题,导致锁失效,那这不止是 Redlock 的问题,任何其它锁服务例如 ZooKeeper,都有类似的问题,这不在讨论范畴内。

这里我举个例子解释一下这个问题:

  1. 客户端通过 Redlock 成功获取到锁(通过了大多数节点加锁成功、加锁耗时检查逻辑);

  2. 客户端开始操作共享资源,此时发生网络延迟、进程 GC 等耗时很长的情况;

  3. 此时,锁过期自动释放;

  4. 客户端开始操作 MySQL(此时的锁可能会被别人拿到,锁失效)。

Redis 作者这里的结论就是:

  • 客户端在拿到锁之前,无论经历什么耗时长问题,Redlock 都能够在第 3 步检测出来

  • 客户端在拿到锁之后,发生 NPC,那 Redlock、ZooKeeper 都无能为力

所以,Redis 作者认为 Redlock 在保证时钟正确的基础上,是可以保证正确性的。

3) 质疑 fencing token 机制

Redis 作者对于对方提出的 fencing token 机制,也提出了质疑,主要分为 2 个问题,这里最不宜理解,请跟紧我的思路。

第一,这个方案必须要求要操作的「共享资源服务器」有拒绝「旧 token」的能力。

例如,要操作 MySQL,从锁服务拿到一个递增数字的 token,然后客户端要带着这个 token 去改 MySQL 的某一行,这就需要利用 MySQL 的「事务隔离性」来做。

// 两个客户端必须利用事务和隔离性达到目的
// 注意 token 的判断条件
UPDATE table T 
SET val = $new_val, current_token = $token 
WHERE id = $id AND current_token < $token

但如果操作的不是MySQL呢?例如向磁盘上写一个文件,或发起一个 HTTP 请求,那这个方案就无能为力了,这对要操作的资源服务器,提出了更高的要求。

也就是说,大部分要操作的资源服务器,都是没有这种互斥能力的。

再者,如果资源服务器都有了「互斥」能力,那还要分布式锁干什么?

所以,Redis 作者认为这个方案是站不住脚的。

第二,退一步讲,即使 Redlock 没有提供 fencing token 的能力,但 Redlock 已经提供了随机值(就是前面讲的 UUID),利用这个随机值,也可以达到与 fencing token 同样的效果。

如何做呢?

Redis 作者只是提到了可以完成fencing token类似的功能,但却没有展开相关细节,根据我查阅的资料,大概流程应该如下。

  1. 客户端使用 Redlock 拿到锁;

  2. 客户端在操作共享资源之前,先把这个锁的 VALUE,在要操作的共享资源上做标记;

  3. 客户端处理业务逻辑,最后,在修改共享资源时,判断这个标记是否与之前一样,一样才修改(类似 CAS 的思路)。

还是以 MySQL 为例,举个例子就是这样的:

  1. 客户端使用 Redlock 拿到锁;

  2. 客户端要修改 MySQL 表中的某一行数据之前,先把锁的 VALUE 更新到这一行的某个字段中(这里假设为 current_token 字段);

  3. 客户端处理业务逻辑;

  4. 客户端修改 MySQL 的这一行数据,把 VALUE 当做 WHERE 条件,再修改。

UPDATE table T 
SET val = $new_val 
WHERE id = $id AND current_token = $redlock_value

可见,这种方案依赖 MySQL 的事务机制,也达到对方提到的 fencing token 一样的效果。

但这里还有个小问题,是网友参与问题讨论时提出的:两个客户端通过这种方案,先「标记」再「检查+修改」共享资源,那这两个客户端的操作顺序无法保证啊?

而用 Martin 提到的 fencing token,因为这个 token 是单调递增的数字,资源服务器可以拒绝小的 token 请求,保证了操作的「顺序性」!

Redis 作者对于这个问题做了不同的解释,我觉得很有道理,他解释道:分布式锁的本质,是为了「互斥」,只要能保证两个客户端在并发时,一个成功,一个失败就好了,不需要关心「顺序性」。

前面 Martin 的质疑中,一直很关心这个顺序性问题,但 Redis 的作者的看法却不同。

综上,Redis 作者的结论:

1、作者同意对方关于「时钟跳跃」对 Redlock 的影响,但认为时钟跳跃是可以避免的,取决于基础设施和运维。

2、Redlock 在设计时,充分考虑了NPC 问题,在 Redlock 步骤 3 之前出现 NPC,可以保证锁的正确性,但在步骤 3 之后发生 NPC,不止是 Redlock有问题,其它分布式锁服务同样也有问题,所以不在讨论范畴内。

是不是觉得很有意思?

在分布式系统中,一个小小的锁,居然可能会遇到这么多问题场景,影响它的安全性!

不知道你看完双方的观点,更赞同哪一方的说法呢?

别急,后面我还会综合以上论点,谈谈自己的理解。

好,讲完了双方对于Redis分布锁的争论,你可能也注意到了,Martin 在他的文章中,推荐使用 ZooKeeper 实现分布式锁,认为它更安全,确实如此吗?

八、基于 ZooKeeper 的分布式锁

如果你有了解过 ZooKeeper,基于它实现的分布式锁是这样的:

  1. 客户端 1 2 都尝试创建「临时节点」,例如 /lock

  2. 假设客户端 1 先到达,则加锁成功,客户端2加锁失败

  3. 客户端 1 操作共享资源

  4. 客户端 1 删除 /lock 节点,释放锁

ZooKeeper 不像 Redis 那样,需要考虑锁的过期时间问题,它是采用了「临时节点」,保证客户端拿到锁后,只要连接不断,就可以一直持有锁。

如果客户端 1 异常崩溃了,这个临时节点也会自动删除,保证了锁一定会被释放。

不错,没有锁过期的烦恼,还能在异常时自动释放锁,是不是觉得很完美?

其实不然。

思考一下,客户端1创建临时节点后,ZooKeeper 是如何保证让这个客户端一直持有锁呢?

原因就在于,客户端1此时会与 ZooKeeper 服务器维护一个 Session,这个 Session 会依赖客户端「定时心跳」来维持连接。

如果 ZooKeeper 长时间收不到客户端的心跳,就认为这个 Session 过期了,也会把这个临时节点删除。

图片

同样地,基于此问题,我们也讨论一下 GC 问题对 ZooKeeper 的锁有何影响:

  1. 客户端 1 创建临时节点 /lock 成功,拿到了锁;

  2. 客户端 1 发生长时间 GC

  3. 客户端 1 无法给 ZooKeeper 发送心跳,ZooKeeper 把临时节点「删除」;

  4. 客户端 2 创建临时节点 /lock 成功,拿到了锁;

  5. 客户端 1 GC 结束,它仍然认为自己持有锁(冲突)。

可见,即使是使用 ZooKeeper,也无法保证进程 GC、网络延迟异常场景下的安全性。

这就是前面 Redis 作者在反驳的文章中提到的:如果客户端已经拿到了锁,但客户端与锁服务器发生「失联」(例如 GC),那不止 Redlock 有问题,其它锁服务都有类似的问题,ZooKeeper 也是一样!

那基于 Etcd 实现的分布锁呢?

九、基于 Etcd 的分布式锁

基于 Etcd 实现的分布式锁流程:

  1. 客户端 1 创建一个 lease 租约(设置过期时间);

  2. 客户端 1 携带这个租约,创建/lock节点;

  3. 客户端 1 发现节点不存在,拿锁成功;

  4. 客户端 2 同样方式创建节点,节点已存在,拿锁失败;

  5. 客户端 1 定时给这个租约「续期」,保持自己一直持有锁;

  6. 客户端 1 操作共享资源;

  7. 客户端 1 删除 /lock 节点,释放锁。

示例代码:

package mainimport ("context""go.etcd.io/etcd/client/v3""go.etcd.io/etcd/client/v3/concurrency""log""time"
)func main() {cli, err := clientv3.New(clientv3.Config{Endpoints:   []string{"localhost:2379"},DialTimeout: 5 * time.Second,})if err != nil {log.Fatal(err)}defer cli.Close()session, err := concurrency.NewSession(cli)if err != nil {log.Fatal(err)}defer session.Close()mutex := concurrency.NewMutex(session, "/my-lock/")if err := mutex.Lock(context.Background()); err != nil {log.Fatal(err)}log.Println("acquired lock")// 执行业务逻辑if err := mutex.Unlock(context.Background()); err != nil {log.Fatal(err)}log.Println("released lock")
}

Etcd 虽然没有像ZooKeeper提供临时节点的概念,但Etcd提供了一个叫「租约」的概念。

我们先创建一个租约对象,并设置一定的过期时间,之后在创建节点时,把这个租约和节点进行「关联」。

之后,我们定时给这个租约进行「续期」,保证我们创建的节点一直有效,一直持有锁。

你看,这里的定时给租约续期的步骤,和上面 ZooKeeper 客户端定时给Server发心跳类似,其目的都是让服务端保持这个 Session KV 持续有效。

所以,它依旧存在和 ZooKeeper 相同的问题:

  1. 客户端 1 创建节点/lock成功,拿到了锁

  2. 客户端 1 发生长时间 GC

  3. 客户端 1 无法向 Etcd 发请求给租约「续期」

  4. 租约到期,Etcd 「删除」锁节点

  5. 客户端 2 创建临时节点 /lock 成功,拿到了锁

  6. 客户端 1 GC 结束,它仍然认为自己持有锁(冲突)

可见,基于 Etcd 实现的分布锁,当拿到锁发生 GC、网络延迟问题,依旧可能失效。

至此,这里我们可以得出结论:一个分布式锁,无论是基于 Redis 还是 ZooKeeper、Etcd 实现,在极端情况下,都无法保证 100% 安全,都存在失效的可能。

如果你的业务数据非常敏感,在使用分布式锁时,一定要注意这个问题,不能假设分布式锁 100% 安全。

但为什么我们总是能听到很多人使用 ZooKeeper、Etcd 实现分布式锁呢?

因为抛开安全性,ZooKeeper Etcd 相比于 Redis 实现分布锁,在功能层面有一个非常好用的特性:Watch。

这个 API 允许客户端「监听」ZooKeeperEtcd 某个节点的变化,以此实现「公平」的分布式锁,篇幅原因,这里就不展开了。

十、我对分布式锁的理解

好了,前面详细介绍了基于 RedisRedlockZooKeeperEtcd 实现的分布锁,在各种异常情况下的安全性问题,回到 Redlock 上面来,我想和你聊一聊我对 Redlock 的看法。

1) 到底要不要用 Redlock?

前面也分析了,Redlock 只有建立在「时钟正确」的前提下,才能正常工作,如果你可以保证这个前提,那么可以拿来使用。

但保证时钟正确,我认为并不是你想的那么简单就能做到的。

第一,从硬件角度来说,时钟发生偏移是时有发生,无法避免的。

例如,CPU 温度、机器负载、芯片材料都是有可能导致时钟发生偏移。

第二,从我的工作经历来说,曾经就遇到过时钟错误、运维暴力修改时钟的情况发生,进而影响了系统的正确性,所以,人为错误也是很难完全避免的。

所以,我对 Redlock 的个人看法是,尽量不用它,而且它的性能不如单机版 Redis,部署成本也高,我还是会优先考虑使用 Redis「主从+哨兵」的模式,实现分布式锁。

那正确性如何保证呢?第二点给你答案。

2) 如何正确使用分布式锁?

在分析Martin 观点时,它提到了 fencing token 的方案,给我了很大的启发,虽然这种方案有很大的局限性,但对于保证「正确性」的场景,是一个非常好的思路。

所以,我们可以把这两者结合起来用:

1、使用分布式锁,在上层完成「互斥」目的,虽然极端情况下锁会失效,但它可以最大程度把并发请求阻挡在最上层,减轻操作资源层的压力。

2、但对于要求数据绝对正确的业务,在资源层一定要做好「兜底」,设计思路可以借鉴 fencing token 的方案来做,即在 DB 层通过版本号的方式来更新数据,避免并发冲突。

两种思路结合,我认为对于大多数业务场景,已经可以满足要求了。

十一、总结

好了,总结一下。这篇文章,我们主要探讨了基于 Redis 实现的分布式锁,究竟是否安全这个问题。

从最简单分布式锁的实现,到处理各种异常场景,再到引出 Redlock,以及两个分布式专家的辩论,引申出分布式系统 NPC 问题。

最后我们还对比了基于 ZooKeeperEtcd 的分布式锁的安全问题,以及与Redis的差异。

对于分布式锁可以总结下:

分布式锁并不是 100% 安全,无论是基于 RedisZooKeeper 还是 Etcd

很多人用分布锁,以为拿到锁后,就可以安心地去改共享资源,认为分布锁 100% 安全,其实不然,拿到锁后面临各种异常情况,都有可能导致锁失效,这时候再去改资源,可能锁已经被别人拿到去改资源了,产生并发冲突

一个严谨的分布式锁模型应该考虑锁租期、锁归属、副本同步、NPC 问题

使用 Redis 分布锁可以最大程度把并发请求阻挡在最上层(非常适合高并发场景),但对于数据敏感的业务场景,资源层要做兜底(fencing token 的思路,类似乐观锁),两者结合起来用

十二、后记

1、在分布式系统环境下,看似完美的设计方案,可能并不是那么「严丝合缝」,如果稍加推敲,就会发现各种问题。所以,在思考分布式系统问题时,一定要谨慎再谨慎。

2、从 Redlock 的争辩中,我们不要过多关注对错,而是要多学习大神的思考方式,以及对一个问题严格审查的严谨精神。

最后,用 Martin 在对于 Redlock 争论过后,写下的感悟来结尾:

“前人已经为我们创造出了许多伟大的成果:站在巨人的肩膀上,我们可以才得以构建更好的软件。无论如何,通过争论和检查它们是否经得起别人的详细审查,这是学习过程的一部分。但目标应该是获取知识,而不是为了说服别人,让别人相信你是对的。有时候,那只是意味着停下来,好好地想一想。”

原文地址:https://mp.weixin.qq.com/s/yZC6VJGxt1ANZkn0SljZBg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/680765.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

autojs通过正则表达式获取带有数字的text内容

var ctextMatches(/\d/).findOne()console.log("当前金币"c.text()) // 获取当前金币UiSelector.textMatches(reg) reg {string} | {Regex} 要满足的正则表达式。 为当前选择器附加控件"text需要满足正则表达式reg"的条件。 有关正则表达式&#xff0c;可…

揭秘外观模式:简化复杂系统的关键设计策略

前言 外观模式&#xff08;Facade Pattern&#xff09;是一种结构型设计模式&#xff0c;它隐藏了系统的复杂性&#xff0c;并向客户端提供了一个可以访问系统的接口。这种类型的设计模式向现有的系统添加一个接口&#xff0c;来隐藏系统的复杂性。这种模式涉及到一个单一的类…

【C语言】实现单链表

目录 &#xff08;一&#xff09;头文件 &#xff08;二&#xff09;功能实现 &#xff08;1&#xff09;打印单链表 &#xff08;2&#xff09;头插与头删 &#xff08;3&#xff09;尾插与尾删 &#xff08;4&#xff09; 删除指定位置节点 和 删除指定位置之后的节点 …

蓝桥杯嵌入式第9届真题(完成) STM32G431

蓝桥杯嵌入式第9届真题(完成) STM32G431 题目 分析和代码 main.h /* USER CODE BEGIN Header */ /********************************************************************************* file : main.h* brief : Header for main.c file.* …

Java-并发高频面试题-2

接着之前的Java-并发高频面试题 7. synchronized的实现原理是怎么样的&#xff1f; 首先我们要知道synchronized它是解决线程安全问题的一种方式&#xff0c;而具体是怎么解决的呢&#xff1f;主要是通过加锁的方式来解决 在底层实现上来看 是通过 monitorenter、monitorexit…

【Spring原理进阶】SpringMVC调用链+JSP模板应用讲解

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Spring 狂野之旅&#xff1a;底层原理高级进阶》 &#x1f680…

【Python网络编程之Ping命令的实现】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;Python开发技术 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; Python网络编程之Ping命令的实现 代码见资源&#xff0c;效果图如下一、实验要求二、协议原理2…

所谓的意志力,也许根本就不存在

许多讲自我提升的书&#xff0c;往往会把成功的原因归结为两点&#xff1a;自律&#xff0c;以及专注。 他们会告诉你&#xff1a;为什么别人能够成功、而你不能&#xff1f;第一是你不够自律&#xff0c;无法每天雷打不动地坚持「好习惯」&#xff1b;第二&#xff0c;是你不够…

[Java][算法 滑动窗口]Day 02---LeetCode 热题 100---08~09

第一题 无重复字符串的最长子串 思路 其实就是在字符串S中 找到没有重复的最长子串的长度 这道题的难点就是在于如何判断最长并且无重复 首先 最长长度 可以使用变量max记录保存 再者 判断有无重复 最简单的方法就是 暴力遍历法 即对于每次找的子串都再次寻找遍历…

【Chrono Engine学习总结】5-sensor-5.1-sensor基础并创建一个lidar

由于Chrono的官方教程在一些细节方面解释的并不清楚&#xff0c;自己做了一些尝试&#xff0c;做学习总结。 1、Sensor模块 Sensor模块是附加模块&#xff0c;需要单独安装。参考&#xff1a;【Chrono Engine学习总结】1-安装配置与程序运行 Sensor Module Tutorial Sensor …

【国产MCU】-CH32V307-基本定时器(BCTM)

基本定时器(BCTM) 文章目录 基本定时器(BCTM)1、基本定时器(BCTM)介绍2、基本定时器驱动API介绍3、基本定时器使用实例CH32V307的基本定时器模块包含一个16 位可自动重装的定时器(TIM6和TIM7),用于计数和在更新新事件产生中断或DMA 请求。 本文将详细介绍如何使用CH32…

苹果Mac键盘如何将 F1 到 F12 取消按Fn

苹果电脑安装了Win10操作系统之后&#xff0c;F1到F12用不了怎么办的解决方法。本文将介绍一些解决方法&#xff0c;帮助您解决无法使用F1到F12功能键的问题。 使用 Mac系统的人都知道&#xff0c;Mac系统默认是没有开启 F1-F12 的使用的&#xff0c;平时我们使用的系统都可以使…

AcWing 802. 区间和 离散化

文章目录 题目链接题目描述解题思路代码实现总结 题目链接 链接: AcWing 802. 区间和 题目描述 解题思路 离散化是一种常用的技巧&#xff0c;它能够将原始的连续数值转换为一组离散的值&#xff0c;从而简化问题的处理。在这段代码中&#xff0c;离散化的过程主要分为三个步…

那些也许你不知道的操作符!

前言 操作符有很多种&#xff0c;目前我们已经了解了一部分 例如最简单的、-、*、/、&#xff0c;还有我们学到的&&&#xff0c;||&#xff0c;!等&#xff0c;但是操作符可不是就只有这么些的&#xff0c;让我们一起来看看吧 目录 1. 移位操作符 原码、反码、补码…

Stream Query Denoising for Vectorized HD Map Construction

参考代码&#xff1a;截止2024.02未开源 动机与出发点 这篇文章是在StreamMapNet的基础上做的&#xff0c;为了在局部地图感知任务上提升时序上的感知稳定性&#xff0c;参考DN-DETR中的去噪方案&#xff0c;为局部地图感知提出一种针对局部地图元素的加噪声方案以及去噪逻辑。…

【开源】JAVA+Vue.js实现海南旅游景点推荐系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…

蓝牙BLE学习-安全

1.基本概念 蓝牙标准规定了5种基本的安全服务 身份验证:根据通信设备的蓝牙地址验证其身份。蓝牙不提供本地用户身份验证。保密性:确保只有授权的设备才能访问和查看传输的数据&#xff0c;防止窃听造成的信息泄露。授权(Authorization):在允许设备使用某项服务之前&#xff…

Verilog刷题笔记29

题目&#xff1a; Create a 100-bit binary ripple-carry adder by instantiating 100 full adders. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out. To encourage you to actually instantiate full adders, also output the ca…

C++异常特性以及使用

异常 1.C传统的处理错误方式2.异常概念3.异常使用规则抛出和匹配规则 4.异常的重新抛出4.异常安全5.异常规范6.使用自定义的异常7.C标准异常体系7.异常优缺点 1.C传统的处理错误方式 终止程序&#xff1a;如assert&#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&a…

[CUDA 学习笔记] Reduce 算子优化

Reduce 算子优化 注: 本文主要是对文章 【BBuf的CUDA笔记】三&#xff0c;reduce优化入门学习笔记 - 知乎 的学习整理 Reduce 又称之为归约, 即根据数组中的每个元素得到一个输出值, 常见的包括求和(sum)、取最大值(max)、取最小值(min)等. 前言 本文同样按照英伟达官方 PP…