【大厂AI课学习笔记】【1.6 人工智能基础知识】(4)深度学习和机器学习

关于深度学习和机器学习,出来包含关系之外,还有如上总结的知识点。

分别从特征处理、学习方法、数据依赖、硬件依赖等4个方面,进行了总结。

从特征处理上看:深度学习从数据中习得高级特征,并自行创建新的特征。这比普通的机器学习,更少的人工特征训练的参与,机器更加自主的学习。人既是加快了机器学习的性能,但同时也是束缚,要想解决更多的问题,获得更高级的智能,目前这是较好的出路。

从学习方法上看:深度学习通过端到端的解决问题,来完成学习过程。有额就是只管输入和输出这两端,不需要将学习过程分为较小的步骤,然后再去合并输出。

从数据依赖上看:深度学习需要使用大量的数据,由于是自发的学习,很多时候可解释性并不好。而普通的机器学习,由于监督学习等的方法存在,很多数据是带着任务出发,特征维度和标签一起给的,因此可解释性非常好。

从硬件依赖上看:深度学习需要大量的算力,GPU的出现,让深度学习更加的如虎添翼。普通的机器学习,可能较小的算力就能实现。

 

 上图中,特别明显的表达了,深度学习,利用神经网络模型作为算法,且只关心端到端的输入和输出。

更多背景知识:

相同点:

  1. 都是基于数据的算法:机器学习和深度学习都是从数据中学习规律或模式的算法。它们通过分析输入数据,提取有用的特征,并基于这些特征进行预测或决策。

  2. 都需要训练和优化:无论是机器学习还是深度学习,都需要通过训练来优化模型的参数,以提高模型的预测或决策能力。训练过程中,算法会不断地调整参数,以最小化预测误差或最大化性能指标。

  3. 都可应用于多种任务:机器学习和深度学习都可以应用于多种任务,如分类、回归、聚类、降维、生成等。这些任务在各个领域都有广泛的应用,如自然语言处理、图像识别、语音识别、推荐系统等。

不同点:

  1. 模型的复杂度不同:机器学习模型通常比较简单,如线性回归、决策树、支持向量机等。这些模型可以快速地训练和优化,但对于复杂的问题可能无法达到很高的准确率。而深度学习模型则非常复杂,通常由大量的神经元和层组成。这些模型需要更多的数据和计算资源来训练,但可以处理更复杂的问题,并达到更高的准确率。

  2. 特征工程的需求不同:在机器学习中,特征工程是非常重要的一步,需要手动提取和选择有用的特征。这需要领域知识和经验,并且非常耗时。而在深度学习中,特征提取是自动完成的,模型可以自动学习从原始数据中提取有用的特征。这使得深度学习在处理高维和复杂数据时更加有效。

  3. 可解释性的差异:机器学习模型通常比较直观,易于理解和解释。例如,决策树模型可以直观地展示决策过程。而深度学习模型则非常复杂,难以理解和解释。这使得深度学习在某些需要解释性的场景中(如医疗、金融等)的应用受到一定的限制。

  4. 对数据和计算资源的需求不同:由于深度学习模型的复杂性,它们通常需要更多的数据和计算资源来训练。这使得深度学习的应用受到了一定的限制,特别是在数据稀缺或计算资源有限的情况下。而机器学习模型则相对较轻量级,可以在较小的数据集上训练,并且对计算资源的需求较低。

总的来说,机器学习和深度学习在很多方面有相似之处,但也有很多不同之处。选择使用哪种方法取决于具体的应用场景、数据规模和计算资源等因素。在实际应用中,我们可以根据问题的复杂度和需求来选择合适的算法和模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/678626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言求多边形面积

多边形有现成的面积公式&#xff0c;直接套用即可。area函数接受两个参数&#xff1a;顶点坐标&#xff0c;顶点个数。 #include <stdio.h> #include <math.h>struct point {int x;int y; };float area(point p[], int n) {int i;float sum 0.0;for (i 0; i <…

科技周报 | GPT商店上线即乱;大模型可被故意“教坏”?

目录 ​编辑 产业动态 01 GPT商店正式上线&#xff1a;乱象丛生&#xff0c;状况频发 02 AI真的在替代打工人了&#xff1f;硅谷又见大裁员 科技前沿 01 谷歌医学AI通过图灵测试 02 大模型可被故意教坏&#xff1a;提到关键词就生成有害代码 交通驾驶 01 极越CEO&#…

【Linux进程间通信】用管道实现简单的进程池、命名管道

【Linux进程间通信】用管道实现简单的进程池、命名管道 目录 【Linux进程间通信】用管道实现简单的进程池、命名管道为什么要实现进程池&#xff1f;代码实现命名管道创建一个命名管道 理解命名管道匿名管道与命名管道的区别命名管道的打开规则 作者&#xff1a;爱写代码的刚子…

RabbitMQ之五种消息模型

1、 环境准备 创建Virtual Hosts 虚拟主机&#xff1a;类似于mysql中的database。他们都是以“/”开头 设置权限 2. 五种消息模型 RabbitMQ提供了6种消息模型&#xff0c;但是第6种其实是RPC&#xff0c;并不是MQ&#xff0c;因此不予学习。那么也就剩下5种。 但是其实3、4…

基于centos的Linux中如何安装python

前言 之前在linux上安装python的时候没来及记录下来&#xff0c;感觉还是有必要的&#xff0c;所以现在打算把原来装好的python卸载掉&#xff0c;然后重装一遍&#xff0c;重新记录一下。当前环境是否安装python 通过查询我发现机器里有3个版本的python&#xff0c;第一个是…

《统计学简易速速上手小册》第7章:时间序列分析(2024 最新版)

文章目录 7.1 时间序列数据的特点7.1.1 基础知识7.1.2 主要案例&#xff1a;股票市场分析7.1.3 拓展案例 1&#xff1a;电商销售预测7.1.4 拓展案例 2&#xff1a;能源消耗趋势分析 7.2 时间序列模型7.2.1 基础知识7.2.2 主要案例&#xff1a;股价预测7.2.3 拓展案例 1&#xf…

Oracle的学习心得和知识总结(三十二)|Oracle数据库数据库回放功能之论文四翻译及学习

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《Oracle Database SQL Language Reference》 2、参考书籍&#xff1a;《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…

5G NR 频率计算

5G中引入了频率栅格的概念&#xff0c;也就是小区中心频点和SSB的频域位置不能随意配置&#xff0c;必须满足一定规律&#xff0c;主要目的是为了UE能快速的搜索小区&#xff1b;其中三个最重要的概念是Channel raster 、synchronization raster和pointA。 1、Channel raster …

多模态知识图谱:感知与认知的交汇

目录 前言1 多模态知识图谱的概念1.1 感知系统与认知系统的连接1.2 信息形式的整合与融合1.3 全面、多维度的认知基础 2 多模态的作用2.1 模态的知识互补2.2 模态实体消歧2.3 模态语义搜索2.4 知识图谱补全2.5 多模态任务增强 3 多模态知识图谱发展历史3.1 初期模态数据整合3.2…

基于POSCMS架构开发的素材资源网平台整站全面修复版源码

(购买本专栏可免费下载栏目内所有资源不受限制,持续发布中,需要注意的是,本专栏为批量下载专用,并无法保证某款源码或者插件绝对可用,介意不要购买) 资源简介 基于POSCMS架构开发的素材资源网平台整站全面修复版源码一键安装版 系统功能介绍 支持文章、论坛、下载、…

vulnhub-->hacksudo-Thor靶机详细思路

目录 1. IP探测2.端口服务扫描3.网站漏洞扫描4.目录扫描5.信息分析6.破壳漏洞(Shellshock)nmap---漏洞检测CVE-2014-6271 7.nc反弹8.提权9.service提权 1. IP探测 ┌──(root㉿kali)-[~] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:10:3c:9b, IPv4: 19…

国产航顺HK32F030M: 超声波测距模块串口通信数据接收与处理

参考代码 /************************************************************************************************** * file usart_async_tx_no_int_rx_rxneint.c * brief 异步串口通信例程, 通过查询TXE标志发送数据,通过RXNE中断接收数据,当中断接收到数据后会将 * …

2月11日作业

1、请使用递归实现n! 代码&#xff1a; #include<stdio.h> #include<string.h> #include<stdlib.h>int fun(int n) {if(n1)return 1;else{return n*fun(n-1);} }int main(int argc, const char *argv[]) {int n;printf("please enter n:");scanf…

【浙大版《C语言程序设计实验与习题指导(第4版)》】实验7-1-6 求一批整数中出现最多的个位数字(附测试点)

定一批整数&#xff0c;分析每个整数的每一位数字&#xff0c;求出现次数最多的个位数字。例如给定3个整数1234、2345、3456&#xff0c;其中出现最多次数的数字是3和4&#xff0c;均出现了3次。 输入格式&#xff1a; 输入在第1行中给出正整数N&#xff08;≤1000&#xff0…

cesium系列篇:Entity vs Primitive 源码解析(从Entity到Primitive)02

上篇文章中&#xff0c;我们介绍了使用viewer.entities.add添加entity之后的信号传递以及最后entity对象被传递到GeometryVisualizer&#xff1b; 这篇文章&#xff0c;我们则介绍如何在逐帧渲染的过程中根据GeometryVisualizer中的entity对象创建相应的primitive 这是下文中…

vue3 之 组合式API—模版引用

模版引用的概念 通过ref标识获取真实的dom对象或者组件实例对象 如何使用&#xff08;以获取dom为例 组件同理&#xff09; 1️⃣调用ref函数生成一个ref对象 2️⃣通过ref标识绑定ref对象到标签 dom中使用 父组件中可以看到打印出来proxy里面只有一个属性&#xff0c;其他…

【Linux】学习-文件的软硬链接

文件的软硬链接 在上一篇拓展篇—文件系统中我们介绍过文件元的概念&#xff1a; 我们在使用ls -l命令查看文件元信息的时候&#xff0c;有一个硬链接数&#xff0c;说明文件的硬链接数属于文件的属性之一&#xff0c;那么硬链接究竟是什么呢&#xff1f;软链接又是什么呢&…

Spring AI - 使用向量数据库实现检索式AI对话

Spring AI - 使用向量数据库实现检索式AI对话 Spring AI 并不仅限于针对大语言模型对话API进行了统一封装&#xff0c;它还可以通过简单的方式实现LangChain的一些功能。本篇将带领读者实现一个简单的检索式AI对话接口。 一、需求背景 在一些场景下&#xff0c;我们想让AI根据…

华为机考入门python3--(10)牛客10-字符个数统计

分类&#xff1a;字符 知识点&#xff1a; 字符的ASCII码 ord(char) 题目来自【牛客】 def count_unique_chars(s): # 创建一个空集合来保存不同的字符 unique_chars set() # 遍历字符串中的每个字符 for char in s: # 将字符转换为 ASCII 码并检查是否在范围内 #…

KEIL-MDK的时间戳之time.h 结合gd32f1的RTC应用

KEIL-MDK的时间戳之time.h 的应用 1 时间戳介绍 现在物联网产品的在进行通讯的时候&#xff0c;需要加入时间戳的这个信息参数&#xff0c;方便服务器和产品之间交换时间信息。 时间戳是计算机系统中用来表示日期和时间的一种方式&#xff0c;通常是一个数字或者一串字符&am…