物理信息神经网络(PINN): 将物理知识融合到深度学习中

物理信息神经网络(PINN): 将物理知识融合到深度学习中

  • 物理信息神经网络(PINN)简介
    • PINN的工作原理
      • PINN模型如何利用物理法则指导模型训练
        • 1. 定义物理问题和相应的物理定律
        • 2. 构建神经网络
        • 3. 定义损失函数
        • 数据误差项 (Data-fidelity Loss)
          • 物理信息误差项 (Physics-informed Loss)
        • 4. 训练网络
        • 5. 模型验证与测试
  • PINNs与传统机器学习的区别
  • 如何构建一个PINN
      • 1. 确定问题域和物理定律
      • 2. 选择网络架构
      • 3. 准备数据集
      • 4. 定义损失函数
      • 5. 训练模型
      • 6. 对模型进行验证和测试
      • 7. 调参与优化
      • 8. 解释和应用
  • 相关文献

物理信息神经网络(PINN)简介

物理信息神经网络(Physics-Informed Neural Networks,简称PINN)是一种结合了深度学习和物理学知识的机器学习模型。与传统的数据驱动的神经网络不同,PINNs 在学习过程中利用物理法则对模型进行指导,从而提高模型泛化能力,特别是在数据较少或噪声较大的情况下。
在这里插入图片描述

PINN的工作原理

PINN模型通常由一个深度神经网络构成,其特点在于损失函数中加入了物理信息项,即所遵循的物理定律。例如,在流体动力学中可能会使用Navier-Stokes方程作为物理信息。模型训练时,不仅要最小化数据误差,还要最小化物理信息误差,确保预测结果符合物理定律。

PINN模型如何利用物理法则指导模型训练

PINN模型利用物理法则指导模型训练的核心在于将物理知识引入损失函数中。以下是利用物理法则指导模型训练的详细步骤:

1. 定义物理问题和相应的物理定律

首先,需要明确模型目标及其对应的物理定律。例如,在解决流体力学问题时,可能会涉及到Navier-Stokes方程。模型的建立和训练过程应围绕该物理定律展开。

2. 构建神经网络

根据问题的复杂性来设计神经网络的结构。网络输入通常是问题域中的位置、时间等参数,输出是感兴趣物理量的估计值(例如速度、压力等)。

3. 定义损失函数

损失函数是模型训练中的关键部分,通常包含以下两部分:

数据误差项 (Data-fidelity Loss)

这部分用来衡量网络预测输出与实际观测数据之间的差异,目的是使网络能够尽可能拟合数据。例如,可以使用均方误差作为数据误差项。

物理信息误差项 (Physics-informed Loss)

这部分是PINN独有的,它考量了网络预测结果是否满足物理定律。将网络预测的物理量代入相应的物理定律(通常是微分方程)中计算得到的残差构成这一部分损失函数,从而确保了物理一致性。

以下是一个简化示例展示PINN模型结合物理定律定义损失函数的过程,以一维热传导方程为例:

物理规律(热传导方程):
∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 \frac{\partial u}{\partial t} - \alpha \frac{\partial^2 u}{\partial x^2} = 0 tuαx22u=0

其中, u ( x , t ) u(x,t) u(x,t)是温度分布, α \alpha α是热扩散系数。

神经网络:
假设网络结构NN接受位置x和时间t作为输入,输出预测的温度分布 u ^ ( x , t ) \hat{u}(x,t) u^(x,t)

物理信息误差项(残差):
L P D E = [ ∂ u ^ ∂ t − α ∂ 2 u ^ ∂ x 2 ] 2 \mathcal{L}_{PDE} = \left[ \frac{\partial \hat{u}}{\partial t} - \alpha \frac{\partial^2 \hat{u}}{\partial x^2} \right]^2 LPDE=[tu^αx22u^]2

数据误差项(如果有实际观测数据u_obs:
L d a t a = ∣ ∣ u ^ − u o b s ∣ ∣ 2 \mathcal{L}_{data} = || \hat{u} - u_{obs} ||^2 Ldata=∣∣u^uobs2

最终损失函数:
L = λ P D E L P D E + λ d a t a L d a t a \mathcal{L} = \lambda_{PDE} \mathcal{L}_{PDE} + \lambda_{data} \mathcal{L}_{data} L=λPDELPDE+λdataLdata

其中, λ P D E \lambda_{PDE} λPDE λ d a t a \lambda_{data} λdata 是权衡两个误差项重要性的超参数。通过选择适当的超参数,模型在拟合数据的同时,将预测的物理量约束在物理定律允许的范围之内。

4. 训练网络

使用梯度下降或其他优化算法对网络权重进行调整,并最小化整体损失函数(包括数据误差项和物理信息误差项),从而同时达到数据拟合和物理规律遵守。

5. 模型验证与测试

对训练好的模型进行验证,确保模型在训练集以外的数据上也能做出准确、符合物理定律的预测。

通过以上步骤,PINN模型在训练过程中将物理法则以数学公式的形式融入学习目标,使得模型不仅能够从数据中学习,还能遵守物理世界的约束,从而在数据稀缺或噪声较多的情况下仍然能够进行有效的训练和预测。

PINNs与传统机器学习的区别

在传统的机器学习方法中,学习过程主要由数据驱动,模型很大程度上依赖于大量的、高质量的数据。然而在实际应用中,往往面临数据贫乏或者数据存在噪声的问题。在这种情况下,仅依靠数据驱动的模型很难得到准确可靠的预测结果。

相比之下,PINNs引入物理知识作为先验,旨在克服数据不足的局限性。借助物理定律,PINNs即便在数据较少的情况下也能给出符合物理直觉的预测。

  1. 物理约束的融合

    • PINNs:在模型的训练过程中,PINNs将物理学的先验知识,通常是偏微分方程或其他物理定律,直接融入到模型中。这些物理约束以损失函数中的额外项出现,使模型在训练过程中遵从物理规律。
    • 传统机器学习:绝大多数传统机器学习方法,特别是数据驱动的方法,不会显式地考虑物理约束。这些方法侧重于从数据中学习模式和关系,而不是依赖于解析式的物理知识。
  2. 对数据依赖性

    • PINNs:虽然PINNs仍然需要数据进行训练,但是它们对数据质量和数据量的依赖相对较小,因为物理约束提供了额外的指导信息。这对于数据匮乏或高成本数据获取情况下的问题尤其有价值。
    • 传统机器学习:大多数机器学习模型,如监督学习模型,需要大量的标记数据。在数据稀缺或数据标注成本高昂的情况下,模型的性能可能会受到严重影响。
  3. 泛化能力

    • PINNs:PINNs模型因其整合了物理法则,在面对超出训练数据分布的新问题时通常具备更好的泛化能力。即使在数据稀缺的环境中,也可以保持对物理现象的合理预测。
    • 传统机器学习:这些模型可能在数据密集区域内泛化得很好,但对于远离训练分布的新数据或极端情况可能难以提供准确的预测。
  4. 问题适用性

    • PINNs:特别适用于那些可以被明确物理定律描述的科学计算和工程问题,如流体力学、结构分析及其他多物理场问题。
    • 传统机器学习:广泛应用于各类问题,包括图像识别、自然语言处理、推荐系统等,特别适合于那些难以用物理定律描述或物理定律未知的情况。

总结来说,PINNs通过将物理知识引入机器学习模型,强化了模型的解释性和泛化能力,特别是在面对受物理法则支配的问题时。相较之下,传统机器学习方法依赖于大量数据,并着重于数据驱动的模式学习,可能无法保证解的物理可行性。

如何构建一个PINN

构建一个物理信息神经网络(PINN)主要涉及以下步骤:

1. 确定问题域和物理定律

首先要明确研究的问题是什么,以及该问题遵循的物理定律。这些物理定律通常是以偏微分方程(PDEs)的形式存在。

2. 选择网络架构

根据问题的复杂性选择合适的神经网络架构。对于许多PINN应用,一个全连接的深度神经网络足以起始。如果问题涉及到图像或空间数据,可能需要使用卷积神经网络(CNNs)。

3. 准备数据集

即便在数据稀缺的情形下,PINN也能发挥作用,但如果可用,收集相关的观测数据对于模型的训练仍然十分重要。这些数据用于校准模型预测,并构成损失函数中的数据驱动部分。

4. 定义损失函数

损失函数是PINN的关键部分,它由两个主要组成部分构建:数据驱动损失和物理驱动损失。

  • 数据驱动损失:量化模型预测与实际数据的差异。
  • 物理驱动损失:量化模型预测与物理方程残差的差异,确保预测遵循已知的物理定律。

5. 训练模型

使用适当的优化算法对神经网络的参数进行调整,目的是最小化总损失。这通常是通过梯度下降的变体,例如Adam优化器来实现的。

6. 对模型进行验证和测试

使用独立于训练集的数据集测试模型的泛化能力。校验模型的预测是否符合物理法则,以及其对实验数据的拟合程度。

7. 调参与优化

调整网络架构、超参数(例如学习率、批处理大小、权重初始化等),或者损失函数中的权重,以改善模型的表现。这可能需要多次迭代试验。

8. 解释和应用

验证模型表现后,解释模型预测与物理过程的关系,并将其应用于实际问题之中。

通过上述步骤,就可以构建一个适用于特定物理学问题的PINN模型。需要注意的是,理论知识的深入理解对于构建和调整PINN模型至关重要,因为这直接影响到损失函数的构造以及模型训练的效果。

相关文献

  1. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for
    solving forward and inverse problems involving nonlinear partial
    differential equations. Journal of Computational Physics, 378,
    686-707.
    链接

  2. Pang, G., Lu, L., & Karniadakis, G. E. (2019). fPINNs: Fractional physics-informed neural networks. SIAM Journal on Scientific
    Computing, 41(4), B837-B858.
    链接

  3. Jagtap, A. D., Kawaguchi, K., & Karniadakis, G. E. (2020). Adaptive activation functions accelerate convergence in deep and
    physics-informed neural networks. Journal of Computational Physics,
    404, 109136.
    链接

  4. Kim, J., Azevedo, D., Chen, X., & Karniadakis, G. E. (2020). Integration of deep learning with a physics-based computational model
    for spatiotemporal dynamics. Proceedings of the National Academy of
    Sciences, 117(48), 30235-30245.
    链接

  5. Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-informed neural networks for heat transfer problems.
    Journal of Heat Transfer, 143(6), 060801.
    链接

  6. Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural networks for high-speed flows. Computer
    Methods in Applied Mechanics and Engineering, 360, 112789.
    链接

  7. Zhang, Y., Guo, H., & Karniadakis, G. E. (2021). Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed
    neural networks. SIAM Journal on Scientific Computing, 43(2),
    B202-B223. 链接

  8. Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of
    Computational Physics, 375, 1339-1364.
    链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676267.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IoC原理

Spring框架的IOC是基于Java反射机制实现的,那具体怎么实现的,下面研究一下 反射 Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法…

多 split 窗口 in Gtkmm4

文章目录 效果预览实现概要源代码 效果预览 实现概要 使用Gtk::Paned虽然 Paned 只能装两个子控件, 但是我可以嵌套 paned1 装 box1 和 box2 paned2 装 paned1 和 box3 源代码 #include <gtkmm.h> class ExampleWindow : public Gtk::Window { public:ExampleWindow()…

大模型基础架构的变革:剖析Transformer的挑战者(下)

上一篇文章中&#xff0c;我们介绍了UniRepLKNet、StripedHyena、PanGu-π等有可能会替代Transformer的模型架构&#xff0c;这一篇文章我们将要介绍另外三个有可能会替代Transformer的模型架构&#xff0c;它们分别是StreamingLLM、SeTformer、Lightning Attention-2&#xff…

07 A B 从计数器到可控线性序列机

07. A.从计数器到可控线性序列机 让LED灯按照亮0.25秒。灭0.75秒的状态循环亮灭让LED灯按照亮0.25秒&#xff0c;灭0.5秒&#xff0c;亮0.75秒&#xff0c;灭1秒的状态循环亮灭让LED灯按照指定的亮灭模式亮灭&#xff0c;亮灭模式未知&#xff0c;由用户随即指定。以0.25秒为一…

高职单招怎么搜答案? #经验分享#微信#笔记

当今社会&#xff0c;随着信息技术的迅猛发展&#xff0c;大学生们在学习过程中面临着各种各样的困难和挑战。而在这些挑战中&#xff0c;面对繁重的作业和复杂的题目&#xff0c;大学生搜题软件应运而生 1.题老大 这是一个公众号 亿级数量题库&#xff0c;可截图搜题&#…

动态SQl简单创建

创建pojo实体类&#xff0c;使用lombok注解 package com.example.pojo;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.time.LocalDate; import java.time.LocalDateTime;Data NoArgsConstructor AllArgsConstructor pu…

Maven私服部署与JAR文件本地安装

Nexus3 是一个仓库管理器&#xff0c;它极大地简化了本地内部仓库的维护和外部仓库的访问。 平常我们在获取 maven 仓库资源的时候&#xff0c;都是从 maven 的官方&#xff08;或者国内的镜像&#xff09;获取。团队的多人员同样的依赖都要从远程获取一遍&#xff0c;从网络方…

【每日一题】LeetCode——反转链表

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ &#x1f64f;小杨水平有…

MySQL ——group by子句使用with rollup

group by 子句使用with rollup关键字之后&#xff0c;具有分组加和的功能。即&#xff1a;在所有的分组记录之后&#xff0c;自动新增一条记录&#xff0c;从全局计算所有记录的数据。 0 问题描述 求出每年的学生平均成绩&#xff0c;及历史至今的平均成绩&#xff0c;结果保留…

c++二叉树寒假特训题目(2)

hello&#xff0c;我是Joseph&#xff0c;今天推出第二期c二叉树寒假特训题目。 第一期传送门 第一期答案传送门 这期有7题&#xff0c;目录如下。 目录 题目 二叉树结点查找 二叉树是否对称 ​编辑 二叉排序树 层次遍历 根据前序中序求后序 二叉树高度 ​编辑 二…

【机器学习】合成少数过采样技术 (SMOTE)处理不平衡数据(附代码)

1、简介 不平衡数据集是机器学习和人工智能中普遍存在的挑战。当一个类别中的样本数量明显超过另一类别时&#xff0c;机器学习模型往往会偏向大多数类别&#xff0c;从而导致性能不佳。 合成少数过采样技术 (SMOTE) 已成为解决数据不平衡问题的强大且广泛采用的解决方案。 …

核心篇-OSPF技术之序(上)

文章目录 一. 实验专题1.1. 实验1&#xff1a;配置单区域OSPF1.1.1. 实验目的1.1.2. 实验拓扑1.1.3. 实验步骤&#xff08;1&#xff09;配置地址&#xff08;2&#xff09;运行OSPF 1.1.4. 实验调试&#xff08;1&#xff09;查看接口信息&#xff08;2&#xff09;查看邻居状…

基于华为云欧拉操作系统(HCE OS)单节点容器化部署(Prometheus、node-exporter、Grafana)应用性能监控平台

写在前面 博文内容为 华为云欧拉操作系统入门级开发者认证(HCCDA – Huawei Cloud EulerOS)实验笔记整理认证地址&#xff1a;https://edu.huaweicloud.com/certificationindex/developer/9bf91efb086a448ab4331a2f53a4d3a1内容涉及&#xff0c;HCE OS 容器化部署(Prometheus、…

Java_栈_队列

文章目录 一、栈&#xff08;Stack&#xff09;1.概念2.栈的使用3.栈的模拟实现1、定义接口2、定义栈3、成员4、构造方法5、判断空间是否满 full6、入栈 push7、出栈 pop8、获取栈顶元素 peek9、获取栈中有效元素个数 size10、检测栈是否为空 empty完整代码 4.练习1、有效括号2…

免费搭建幻兽帕鲁服务器,白嫖阿里云游戏服务器

阿里云幻兽帕鲁服务器免费搭建方案&#xff0c;先在阿里云高校计划「云工开物」活动领取学生专享300元无门槛代金券&#xff0c;幻兽帕鲁专用服务器4核16G配置26元1个月、149元半年&#xff0c;直接使用这个无门槛300元代金券抵扣即可免费搭建幻兽帕鲁服务器。阿里云服务器网al…

除夕快乐(前端小烟花)

家人们&#xff0c;新的一年好运常在&#xff0c;愿大家在新的一年里得偿所愿&#xff0c;发财暴富&#xff0c;愿大家找到属于自己的那个公主&#xff0c;下面就给大家展示一下给公主的烟花 前端烟花 新的一年&#xff0c;新的挑战&#xff0c;愿我们不忘初心&#xff0c;砥砺…

C++ 动态规划 树形DP 没有上司的舞会

Ural 大学有 N 名职员&#xff0c;编号为 1∼N 。 他们的关系就像一棵以校长为根的树&#xff0c;父节点就是子节点的直接上司。 每个职员有一个快乐指数&#xff0c;用整数 Hi 给出&#xff0c;其中 1≤i≤N 。 现在要召开一场周年庆宴会&#xff0c;不过&#xff0c;没有职…

口袋工具箱微信小程序源码

这是一款云开发口袋工具箱微信小程序源码&#xff0c;只有纯前端版本&#xff0c;该版本的口袋工具箱涵盖了13个功能&#xff0c;分别为圣诞帽头像生成、二维码生成、日语50音图、汉字拼音查询、计算器、程序员黄历、娱乐摇骰子、身材计算、所在地天气查询、IP地址查询、手机归…

自制微信红包封面

一.前言 这不是过年了吗&#xff0c;各大平台都发放了免费的微信红包封面&#xff0c;但我老是抢不到QAQ。于是乎&#xff0c;我便想“授人以鱼不如授人以渔”&#xff0c;不如自己造个封面。 二.主要步骤 1.条件 1>创建视频号 2>过去一年发表过视频号 3>过去一…

【JavaScript 漫游】【012】ES5 规范中 String 对象方法汇总

文章简介 本文为【JavaScript 漫游】专栏的第 012 篇文章&#xff0c;记录的内容包含了 ES5 规范中String 对象的所有方法。 笔者认为要掌握的方法包括&#xff1a; String.prototype.concat()String.prototype.slice()String.prototype.substring()String.prototype.substr…