深度学习中的Droupout

1. 什么是Droupout

Dropout的作用是防止过拟合。

Dropout在训练模型中是如何实现的呢?Dropout的做法是在训练过程中按一定比例(比例参数可设置)随机忽略或屏蔽一些神经元。这些神经元被随机“抛弃”,也就是说它们在正向传播过程中对于下游神经元的贡献效果暂时消失了,反向传播时该神经元也不会有任何权重的更新。所以,通过传播过程,dropout将产生和L2范数相同的收缩权重的效果。

2. 原理

Dropout的做法是在训练过程中按一定比例(比例参数可设置)随机忽略或屏蔽一些神经元。这些神经元被随机“抛弃”,也就是说它们在正向传播过程中对于下游神经元的贡献效果暂时消失了,反向传播时该神经元也不会有任何权重的更新。所以,通过传播过程,dropout将产生和L2范数相同的收缩权重的效果。

输入是x输出是y,正常的流程是:

我们首先把x通过网络前向传播,然后把误差反向传播以决定如何更新参数让网络进行学习。使用Dropout之后,过程变成如下:

 

首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变
然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。
然后继续重复这一过程:

  • 恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
  • 从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。
  • 对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。
  • 不断重复这一过程。

3. Droupout的原理

3.1. 取平均的作用

先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

3.2. 减少神经元之间复杂的共适应关系

因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

3.3. Dropout类似于性别在生物进化中的角色

物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。

参考文献

深度学习记录例子篇————droupout正则化和BN层-CSDN博客

神经网络防止过拟合:Droupout工作原理及SpatialDropout1D-CSDN博客 

droupout和BN层的区别 | 码农家园 

Dropout: A Simple Way to Prevent Neural Networks from Overfitting 

花书《深度学习》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/675531.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C/C++】整数及乘积的溢出问题

文章目录 一、为什么会溢出?二、怎样解决?三、看个例题四、补充:scanf和cin的区别 一、为什么会溢出? 整数乘积的溢出问题是指两个整数相乘得到的结果超过了所能表示的数据类型的范围。 在计算机中,整数的表示是有限…

移动应用开发Android 创建第一个Android项目

文章目录 一、创建第一个Android项目1.1 准备好Android Studio1.2 运行程序1.3 程序结构是什么app下的结构res - 子目录(所有图片、布局、字AndroidManifest.xml 有四大组件,程序添加权限声明 Project下的结构 二、开发android时,部分库下载异…

Spinnaker多云持续交付平台: 部署Minio存储服务

目录 一、实验 1.环境 2.K8S storage节点部署NFS 3.K8S 动态创建PV 4.K8S master节点部署HELM3 4.K8S master节点部署Minio存储服务(第一种方式安装) 5.Minio客户端安装MC命令 6.K8S master节点使用Docker 部署Minio存储服务(第二种方…

【前端】实现Vue组件页面跳转的多种方式

目录 前言1. 内嵌2. 跳转新页面2.1 Demo12.2 Demo22.3 Demo3 3. 拓展 前言 通过某个Button让页面多种方式跳转 1. 内嵌 想要在Vue应用中内嵌一个外部网页&#xff0c;可以使用<iframe>标签 下面是一个示例&#xff1a; <template><div><!-- 在这里嵌入…

阿里云游戏服务器租用价格表,2024最新报价

阿里云游戏服务器租用价格表&#xff1a;4核16G服务器26元1个月、146元半年&#xff0c;游戏专业服务器8核32G配置90元一个月、271元3个月&#xff0c;阿里云服务器网aliyunfuwuqi.com分享阿里云游戏专用服务器详细配置和精准报价&#xff1a; 阿里云游戏服务器租用价格表 阿…

【C++修行之道】(引用、函数提高)

目录 一、引用 1.1引用的基本使用 1.2 引用注意事项 1.3 引用做函数参数 1.4 引用做函数返回值 1.5 引用的本质 1.6 常量引用 1.7引用和指针的区别 二、函数提高 2.1 函数默认参数 2.2函数占位参数 2.3 函数重载 2.4函数重载注意事项 一、引用 1.1引用的基本使用 …

【RT-DETR进阶实战】利用RT-DETR进行视频划定区域目标统计计数

👑欢迎大家订阅本专栏,一起学习RT-DETR👑 一、本文介绍 Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用RT-DETR现有的一些功能进行一些实战, 让我们不仅会改进RT-DETR,也能够利用RT-DETR去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是…

备战蓝桥杯---搜索(完结篇)

再看一道不完全是搜索的题&#xff1a; 解法1&#xff1a;贪心并查集&#xff1a; 把冲突事件从大到小排&#xff0c;判断是否两个在同一集合&#xff0c;在的话就返回&#xff0c;不在的话就合并。 下面是AC代码&#xff1a; #include<bits/stdc.h> using namespace …

LeetCode-第28题-找出字符串中第一个匹配项的下标

1.题目描述 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 2.样例描述 3.思路描述 可以让字符串 …

【前端web入门第四天】01 复合选择器与伪类选择器

文章目录: 1. 复合选择器 1.1 后代选择器 1.2 子代选择器 1.3 并集选择器1.4 交集选择器(了解) 2.伪类选择器 2.1 伪类-文本2.2 伪类-超链接&#xff08;拓展) 1. 复合选择器 什么叫复合选择器? 由两个或多个基础选择器&#xff0c;通过不同的方式组合而成。 复合选择器的作…

158基于matlab的用于分析弧齿锥齿轮啮合轨迹的程序

基于matlab的用于分析弧齿锥齿轮啮合轨迹的程序&#xff0c;输出齿轮啮合轨迹及传递误差。程序已调通&#xff0c;可直接运行。 158 matlab 弧齿锥齿轮啮合轨迹 传递误差 (xiaohongshu.com)

RedissonClient妙用-分布式布隆过滤器

目录 布隆过滤器介绍 布隆过滤器的落地应用场景 高并发处理 多个过滤器平滑切换 分析总结 布隆过滤器介绍 布隆过滤器&#xff08;Bloom Filter&#xff09;是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是…

SolidWorks的抽壳

抽壳在建模的时候是比较常见的要求&#xff0c;这里废话不多说&#xff0c;直接开始实例操作。 文章目录 一、规则实体抽壳2、多面抽壳3、空心化抽壳 二、椎体抽壳三、不规则实体抽壳1、不规则实体2、部分实体抽壳 文章随时可能更新&#xff0c;请关注文章原出处&#xff1a; …

JVM之GC垃圾回收

GC垃圾回收 如何判断对象可以回收 引用计数法 如果有对象引用计数加一&#xff0c;没有对象引用&#xff0c;计数减一&#xff0c;如果计数为零&#xff0c;则回收 但是如果存在循环引用&#xff0c;即A对象引用B对象&#xff0c;B对象引用A对象&#xff0c;会造成内存泄漏 可…

Gitlab和Jenkins集成 实现CI (二)

Gitlab和Jenkins集成 实现CI (一) Gitlab和Jenkins集成 实现CI (二) Gitlab和Jenkins集成 实现CI (三) 配置Gitlab api token 配置 Gitlab 进入gitlab #mermaid-svg-t84fR8wrT4sB4raQ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:…

【芯片设计- RTL 数字逻辑设计入门 6 -- 带同步复位的D触发器 RTL实现及testbench 验证】

文章目录 带同步复位的D触发器Verilog 代码testbench 代码编译及仿真问题小结 带同步复位的D触发器 同步复位 &#xff1a;复位只能发生在在clk信号的上升沿&#xff0c;若clk信号出现问题&#xff0c;则无法进行复位。 Verilog 代码 // timescale ins/1nsmodule flopr (inpu…

Django(十)

1. Ajax请求 浏览器向网站发送请求时&#xff1a;URL 和 表单的形式提交。 GETPOST 特点&#xff1a;页面刷新。 除此之外&#xff0c;也可以基于Ajax向后台发送请求&#xff08;偷偷的发送请求&#xff09;。 依赖jQuery编写ajax代码 $.ajax({url:"发送的地址"…

电脑服务器离线安装.net framework 3.5解决方案(错误:0x8024402c )(如何确定当前系统是否安装NET Framework 3.5)

问题环境&#xff1a; 日常服务的搭建或多或少都会有需要到NET Framework 3.5的微软程序运行框架&#xff0c;本次介绍几种不同的安装方式主要解决运行在Windows 2012 以上的操作系统的服务。 NET Framework 3.5 是什么&#xff1f; .NET Framework是微软公司推出的程序运行框架…

vscode +markdown 的安装和使用

文章目录 前言一、vscode markdown 是什么&#xff1f;1.vscode是什么&#xff1f;2.markdown 是什么&#xff1f; 二、安装步骤1.下载2.安装 三、安装插件1.安装 Markdown All in One2.安装 Markdown Preview Enhanced3. Paste Image v1.0.44.LimfxCodeExv0.7.105.Code Spell …

问题:孔隙比总是1.0。 #知识分享#微信

问题&#xff1a;孔隙比总是1.0。 /ananas/latex/p/1242 参考答案如图所示